Loading…

Effects of Glycosylation on the Structure and Dynamics of Eel Calcitonin in Micelles and Lipid Bilayers Determined by Nuclear Magnetic Resonance Spectroscopy

The three-dimensional structures of eel calcitonin (CT) and two glycosylated CT derivatives, [Asn(GlcNAc)3]-CT (CT-GlcNAc) and [Asn(Man6-GlcNAc2)3]-CT (CT-M6), in micelles were determined by solution NMR spectroscopy. The topologies of these peptides associated with oriented lipid bilayers were dete...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1999-06, Vol.38 (26), p.8377-8384
Main Authors: Hashimoto, Yasuhiro, Toma, Kazunori, Nishikido, Joji, Yamamoto, Keizo, Haneda, Katsuji, Inazu, Toshiyuki, Valentine, Kathleen G, Opella, Stanley J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a446t-4fbc90c4b1ec29593fbff56b423e1c4e6a426e861d40db2d183360365aaa7063
cites cdi_FETCH-LOGICAL-a446t-4fbc90c4b1ec29593fbff56b423e1c4e6a426e861d40db2d183360365aaa7063
container_end_page 8384
container_issue 26
container_start_page 8377
container_title Biochemistry (Easton)
container_volume 38
creator Hashimoto, Yasuhiro
Toma, Kazunori
Nishikido, Joji
Yamamoto, Keizo
Haneda, Katsuji
Inazu, Toshiyuki
Valentine, Kathleen G
Opella, Stanley J
description The three-dimensional structures of eel calcitonin (CT) and two glycosylated CT derivatives, [Asn(GlcNAc)3]-CT (CT-GlcNAc) and [Asn(Man6-GlcNAc2)3]-CT (CT-M6), in micelles were determined by solution NMR spectroscopy. The topologies of these peptides associated with oriented lipid bilayers were determined with solid-state NMR. All of the peptides were found to have an identical conformation in micelles characterized by an amphipathic α-helix consisting of residues Ser5 through Leu19 followed by an unstructured region at the C-terminus. The overall conformation of the peptide moiety was not affected by the glycosylation. Nevertheless, comparison of the relative exchange rates of the Leu12 amide proton might suggest the possibility that fluctuations of the α-helix are reduced by glycosylation. The presence of NOEs between the carbohydrate and the peptide moieties of CT-GlcNAc and CT-M6 and the amide proton chemical shift data suggested that the carbohydrate interacted with the peptide, and this might account for the conformational stabilization of the α-helix. Both the unmodified CT and the glycosylated CT were found to have orientations with their helix axes parallel to the plane of the lipid bilayers by solid-state NMR spectroscopy.
doi_str_mv 10.1021/bi983018j
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69849242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69849242</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-4fbc90c4b1ec29593fbff56b423e1c4e6a426e861d40db2d183360365aaa7063</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi0EokvhwAsgX0DiELBjx0mOdLvdIm3511WFuFiOMwEviR1sR2oehnfFbaqKAxLSSKORf_q-GX8IPafkDSU5fduYumKEVocHaEWLnGS8rouHaEUIEVleC3KEnoRwSCMnJX-MjihhVUkqtkK_N10HOgbsOrztZ-3C3KtonMWp4g_Al9FPOk4esLItPp2tGoy-xTfQ47XqtYnOGotTXRgNfQ_hFt2Z0bT4xPRqBh_wKUTwg7HQ4mbGHybdg_L4Qn23EI3GXyA4q6xOhmPax7ug3Tg_RY861Qd4dteP0f5ss1-fZ7uP2_frd7tMcS5ixrtG10TzhoLO66JmXdN1hWh4zoBqDkLxXEAlaMtJ2-QtrRgThIlCKVUSwY7Rq0V29O7XBCHKwYSbU5QFNwUp6orXeVL7H0hLVrK8LBL4egF1uiR46OTozaD8LCmRN5nJ-8wS--JOdGoGaP8il5ASkC2ACRGu79-V_ylFMizk_tOlJCdX26-fz77Jq8S_XHilgzy4ydv0d_8w_gO13q8H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17373275</pqid></control><display><type>article</type><title>Effects of Glycosylation on the Structure and Dynamics of Eel Calcitonin in Micelles and Lipid Bilayers Determined by Nuclear Magnetic Resonance Spectroscopy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hashimoto, Yasuhiro ; Toma, Kazunori ; Nishikido, Joji ; Yamamoto, Keizo ; Haneda, Katsuji ; Inazu, Toshiyuki ; Valentine, Kathleen G ; Opella, Stanley J</creator><creatorcontrib>Hashimoto, Yasuhiro ; Toma, Kazunori ; Nishikido, Joji ; Yamamoto, Keizo ; Haneda, Katsuji ; Inazu, Toshiyuki ; Valentine, Kathleen G ; Opella, Stanley J</creatorcontrib><description>The three-dimensional structures of eel calcitonin (CT) and two glycosylated CT derivatives, [Asn(GlcNAc)3]-CT (CT-GlcNAc) and [Asn(Man6-GlcNAc2)3]-CT (CT-M6), in micelles were determined by solution NMR spectroscopy. The topologies of these peptides associated with oriented lipid bilayers were determined with solid-state NMR. All of the peptides were found to have an identical conformation in micelles characterized by an amphipathic α-helix consisting of residues Ser5 through Leu19 followed by an unstructured region at the C-terminus. The overall conformation of the peptide moiety was not affected by the glycosylation. Nevertheless, comparison of the relative exchange rates of the Leu12 amide proton might suggest the possibility that fluctuations of the α-helix are reduced by glycosylation. The presence of NOEs between the carbohydrate and the peptide moieties of CT-GlcNAc and CT-M6 and the amide proton chemical shift data suggested that the carbohydrate interacted with the peptide, and this might account for the conformational stabilization of the α-helix. Both the unmodified CT and the glycosylated CT were found to have orientations with their helix axes parallel to the plane of the lipid bilayers by solid-state NMR spectroscopy.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi983018j</identifier><identifier>PMID: 10387083</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetylglucosamine - chemistry ; Amino Acid Sequence ; Anguilla ; Anguilliformes ; Animals ; Brackish ; Calcitonin - chemistry ; Calcitonin - metabolism ; Carbohydrate Conformation ; Carbohydrate Sequence ; Crystallography, X-Ray ; Eels ; Freshwater ; Glycosylation ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Marine ; Micelles ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Peptide Fragments - chemistry ; Peptide Fragments - metabolism ; Protein Structure, Secondary ; Structure-Activity Relationship ; Thermodynamics</subject><ispartof>Biochemistry (Easton), 1999-06, Vol.38 (26), p.8377-8384</ispartof><rights>Copyright © 1999 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-4fbc90c4b1ec29593fbff56b423e1c4e6a426e861d40db2d183360365aaa7063</citedby><cites>FETCH-LOGICAL-a446t-4fbc90c4b1ec29593fbff56b423e1c4e6a426e861d40db2d183360365aaa7063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10387083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hashimoto, Yasuhiro</creatorcontrib><creatorcontrib>Toma, Kazunori</creatorcontrib><creatorcontrib>Nishikido, Joji</creatorcontrib><creatorcontrib>Yamamoto, Keizo</creatorcontrib><creatorcontrib>Haneda, Katsuji</creatorcontrib><creatorcontrib>Inazu, Toshiyuki</creatorcontrib><creatorcontrib>Valentine, Kathleen G</creatorcontrib><creatorcontrib>Opella, Stanley J</creatorcontrib><title>Effects of Glycosylation on the Structure and Dynamics of Eel Calcitonin in Micelles and Lipid Bilayers Determined by Nuclear Magnetic Resonance Spectroscopy</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The three-dimensional structures of eel calcitonin (CT) and two glycosylated CT derivatives, [Asn(GlcNAc)3]-CT (CT-GlcNAc) and [Asn(Man6-GlcNAc2)3]-CT (CT-M6), in micelles were determined by solution NMR spectroscopy. The topologies of these peptides associated with oriented lipid bilayers were determined with solid-state NMR. All of the peptides were found to have an identical conformation in micelles characterized by an amphipathic α-helix consisting of residues Ser5 through Leu19 followed by an unstructured region at the C-terminus. The overall conformation of the peptide moiety was not affected by the glycosylation. Nevertheless, comparison of the relative exchange rates of the Leu12 amide proton might suggest the possibility that fluctuations of the α-helix are reduced by glycosylation. The presence of NOEs between the carbohydrate and the peptide moieties of CT-GlcNAc and CT-M6 and the amide proton chemical shift data suggested that the carbohydrate interacted with the peptide, and this might account for the conformational stabilization of the α-helix. Both the unmodified CT and the glycosylated CT were found to have orientations with their helix axes parallel to the plane of the lipid bilayers by solid-state NMR spectroscopy.</description><subject>Acetylglucosamine - chemistry</subject><subject>Amino Acid Sequence</subject><subject>Anguilla</subject><subject>Anguilliformes</subject><subject>Animals</subject><subject>Brackish</subject><subject>Calcitonin - chemistry</subject><subject>Calcitonin - metabolism</subject><subject>Carbohydrate Conformation</subject><subject>Carbohydrate Sequence</subject><subject>Crystallography, X-Ray</subject><subject>Eels</subject><subject>Freshwater</subject><subject>Glycosylation</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Marine</subject><subject>Micelles</subject><subject>Molecular Sequence Data</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - metabolism</subject><subject>Protein Structure, Secondary</subject><subject>Structure-Activity Relationship</subject><subject>Thermodynamics</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxi0EokvhwAsgX0DiELBjx0mOdLvdIm3511WFuFiOMwEviR1sR2oehnfFbaqKAxLSSKORf_q-GX8IPafkDSU5fduYumKEVocHaEWLnGS8rouHaEUIEVleC3KEnoRwSCMnJX-MjihhVUkqtkK_N10HOgbsOrztZ-3C3KtonMWp4g_Al9FPOk4esLItPp2tGoy-xTfQ47XqtYnOGotTXRgNfQ_hFt2Z0bT4xPRqBh_wKUTwg7HQ4mbGHybdg_L4Qn23EI3GXyA4q6xOhmPax7ug3Tg_RY861Qd4dteP0f5ss1-fZ7uP2_frd7tMcS5ixrtG10TzhoLO66JmXdN1hWh4zoBqDkLxXEAlaMtJ2-QtrRgThIlCKVUSwY7Rq0V29O7XBCHKwYSbU5QFNwUp6orXeVL7H0hLVrK8LBL4egF1uiR46OTozaD8LCmRN5nJ-8wS--JOdGoGaP8il5ASkC2ACRGu79-V_ylFMizk_tOlJCdX26-fz77Jq8S_XHilgzy4ydv0d_8w_gO13q8H</recordid><startdate>19990629</startdate><enddate>19990629</enddate><creator>Hashimoto, Yasuhiro</creator><creator>Toma, Kazunori</creator><creator>Nishikido, Joji</creator><creator>Yamamoto, Keizo</creator><creator>Haneda, Katsuji</creator><creator>Inazu, Toshiyuki</creator><creator>Valentine, Kathleen G</creator><creator>Opella, Stanley J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>19990629</creationdate><title>Effects of Glycosylation on the Structure and Dynamics of Eel Calcitonin in Micelles and Lipid Bilayers Determined by Nuclear Magnetic Resonance Spectroscopy</title><author>Hashimoto, Yasuhiro ; Toma, Kazunori ; Nishikido, Joji ; Yamamoto, Keizo ; Haneda, Katsuji ; Inazu, Toshiyuki ; Valentine, Kathleen G ; Opella, Stanley J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-4fbc90c4b1ec29593fbff56b423e1c4e6a426e861d40db2d183360365aaa7063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Acetylglucosamine - chemistry</topic><topic>Amino Acid Sequence</topic><topic>Anguilla</topic><topic>Anguilliformes</topic><topic>Animals</topic><topic>Brackish</topic><topic>Calcitonin - chemistry</topic><topic>Calcitonin - metabolism</topic><topic>Carbohydrate Conformation</topic><topic>Carbohydrate Sequence</topic><topic>Crystallography, X-Ray</topic><topic>Eels</topic><topic>Freshwater</topic><topic>Glycosylation</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Marine</topic><topic>Micelles</topic><topic>Molecular Sequence Data</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - metabolism</topic><topic>Protein Structure, Secondary</topic><topic>Structure-Activity Relationship</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashimoto, Yasuhiro</creatorcontrib><creatorcontrib>Toma, Kazunori</creatorcontrib><creatorcontrib>Nishikido, Joji</creatorcontrib><creatorcontrib>Yamamoto, Keizo</creatorcontrib><creatorcontrib>Haneda, Katsuji</creatorcontrib><creatorcontrib>Inazu, Toshiyuki</creatorcontrib><creatorcontrib>Valentine, Kathleen G</creatorcontrib><creatorcontrib>Opella, Stanley J</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashimoto, Yasuhiro</au><au>Toma, Kazunori</au><au>Nishikido, Joji</au><au>Yamamoto, Keizo</au><au>Haneda, Katsuji</au><au>Inazu, Toshiyuki</au><au>Valentine, Kathleen G</au><au>Opella, Stanley J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Glycosylation on the Structure and Dynamics of Eel Calcitonin in Micelles and Lipid Bilayers Determined by Nuclear Magnetic Resonance Spectroscopy</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>1999-06-29</date><risdate>1999</risdate><volume>38</volume><issue>26</issue><spage>8377</spage><epage>8384</epage><pages>8377-8384</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The three-dimensional structures of eel calcitonin (CT) and two glycosylated CT derivatives, [Asn(GlcNAc)3]-CT (CT-GlcNAc) and [Asn(Man6-GlcNAc2)3]-CT (CT-M6), in micelles were determined by solution NMR spectroscopy. The topologies of these peptides associated with oriented lipid bilayers were determined with solid-state NMR. All of the peptides were found to have an identical conformation in micelles characterized by an amphipathic α-helix consisting of residues Ser5 through Leu19 followed by an unstructured region at the C-terminus. The overall conformation of the peptide moiety was not affected by the glycosylation. Nevertheless, comparison of the relative exchange rates of the Leu12 amide proton might suggest the possibility that fluctuations of the α-helix are reduced by glycosylation. The presence of NOEs between the carbohydrate and the peptide moieties of CT-GlcNAc and CT-M6 and the amide proton chemical shift data suggested that the carbohydrate interacted with the peptide, and this might account for the conformational stabilization of the α-helix. Both the unmodified CT and the glycosylated CT were found to have orientations with their helix axes parallel to the plane of the lipid bilayers by solid-state NMR spectroscopy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>10387083</pmid><doi>10.1021/bi983018j</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 1999-06, Vol.38 (26), p.8377-8384
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_69849242
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Acetylglucosamine - chemistry
Amino Acid Sequence
Anguilla
Anguilliformes
Animals
Brackish
Calcitonin - chemistry
Calcitonin - metabolism
Carbohydrate Conformation
Carbohydrate Sequence
Crystallography, X-Ray
Eels
Freshwater
Glycosylation
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
Marine
Micelles
Molecular Sequence Data
Nuclear Magnetic Resonance, Biomolecular
Peptide Fragments - chemistry
Peptide Fragments - metabolism
Protein Structure, Secondary
Structure-Activity Relationship
Thermodynamics
title Effects of Glycosylation on the Structure and Dynamics of Eel Calcitonin in Micelles and Lipid Bilayers Determined by Nuclear Magnetic Resonance Spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Glycosylation%20on%20the%20Structure%20and%20Dynamics%20of%20Eel%20Calcitonin%20in%20Micelles%20and%20Lipid%20Bilayers%20Determined%20by%20Nuclear%20Magnetic%20Resonance%20Spectroscopy&rft.jtitle=Biochemistry%20(Easton)&rft.au=Hashimoto,%20Yasuhiro&rft.date=1999-06-29&rft.volume=38&rft.issue=26&rft.spage=8377&rft.epage=8384&rft.pages=8377-8384&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi983018j&rft_dat=%3Cproquest_cross%3E69849242%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a446t-4fbc90c4b1ec29593fbff56b423e1c4e6a426e861d40db2d183360365aaa7063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17373275&rft_id=info:pmid/10387083&rfr_iscdi=true