Loading…

CD30 Overexpression Enhances Negative Selection in the Thymus and Mediates Programmed Cell Death Via a Bcl-2-Sensitive Pathway

The biological function of CD30 in the thymus has been only partially elucidated, although recent data indicate that it may be involved in negative selection. Because CD30 is expressed only by a small subpopulation of medullary thymocytes, we generated transgenic (Tg) mice overexpressing CD30 in T l...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 1999-07, Vol.163 (1), p.194-205
Main Authors: Chiarle, Roberto, Podda, Antonello, Prolla, Gabriel, Podack, Eckhard R, Thorbecke, G. Jeanette, Inghirami, Giorgio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The biological function of CD30 in the thymus has been only partially elucidated, although recent data indicate that it may be involved in negative selection. Because CD30 is expressed only by a small subpopulation of medullary thymocytes, we generated transgenic (Tg) mice overexpressing CD30 in T lymphocytes to further address its role in T cell development. CD30 Tg mice have normal thymic size with a normal number and subset distribution of thymocytes. In vitro, in the absence of CD30 ligation, thymocytes of CD30 Tg mice have normal survival and responses to apoptotic stimuli such as radiation, dexamethasone, and Fas. However, in contrast to controls, CD30 Tg thymocytes are induced to undergo programmed cell death (PCD) upon cross-linking of CD30, and the simultaneous engagement of TCR and CD30 results in a synergistic increase in thymic PCD. CD30-mediated PCD requires caspase 1 and caspase 3, is not associated with the activation of NF-kappaB or c-Jun, but is totally prevented by Bcl-2. Furthermore, CD30 overexpression enhances the deletion of CD4+/CD8+ thymocytes induced by staphylococcal enterotoxin B superantigen and specific peptide. These findings suggest that CD30 may act as a costimulatory molecule in thymic negative selection.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.163.1.194