Loading…

Correlation between self-association modes and GTPase activation of dynamin

The GTPase activity of dynamin is obligatorily coupled, by a mechanism yet unknown, to the internalization of clathrin-coated endocytic vesicles. Dynamin oligomerizes in vitro and in vivo and both its mechanical and enzymatic activities appear to be mediated by this self-assembly. In this study we d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Protein Chemistry 1999-04, Vol.18 (3), p.277-290
Main Authors: Binns, D D, Barylko, B, Grichine, N, Atkinson, M A, Helms, M K, Jameson, D M, Eccleston, J F, Albanesi, J P
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-dd9c9289e8779b561b17a503fffafbf0f1dda7696eb6979f9d766f27573680493
cites
container_end_page 290
container_issue 3
container_start_page 277
container_title Journal of Protein Chemistry
container_volume 18
creator Binns, D D
Barylko, B
Grichine, N
Atkinson, M A
Helms, M K
Jameson, D M
Eccleston, J F
Albanesi, J P
description The GTPase activity of dynamin is obligatorily coupled, by a mechanism yet unknown, to the internalization of clathrin-coated endocytic vesicles. Dynamin oligomerizes in vitro and in vivo and both its mechanical and enzymatic activities appear to be mediated by this self-assembly. In this study we demonstrate that dynamin is characterized by a tetramer/monomer equilibrium with an equilibrium constant of 1.67 x 10(17) M(-3). Stopped-flow fluorescence experiments show that the association rate constant for 2'(3')-O-N-methylanthraniloyl (mant)GTP is 7.0 x 10(-5) M(-1) s(-1) and the dissociation rate constant is 2.1 s(-1), whereas the dissociation rate constant for mantdeoxyGDP is 93 s(-1). We also demonstrate the cooperativity of dynamin binding and GTPase activation on a microtubule lattice. Our results indicate that dynamin self-association is not a sufficient condition for the expression of maximal GTPase activity, which suggests that dynamin molecules must be in the proper conformation or orientation if they are to form an active oligomer.
doi_str_mv 10.1023/a:1021083211267
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69866134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624135141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-dd9c9289e8779b561b17a503fffafbf0f1dda7696eb6979f9d766f27573680493</originalsourceid><addsrcrecordid>eNpdkDFPwzAUhC0EoqUws6GIgS3UjpNnmw1VUBCVYCiz5cTPUqokLnYK6r8nKB2A6Yb77vTeEXLJ6C2jGZ-bu0EYlTxjLANxRKasEDzNVc6PyZRmQqSScj4hZzFuKKVKSnpKJoxyVeQ5TMnLwoeAjelr3yUl9l-IXRKxcamJ0Vf1aLTeYkxMZ5Pl-s1ETEzV15-j511i951p6-6cnDjTRLw46Iy8Pz6sF0_p6nX5vLhfpVVeQJ9aqyqVSYVSCFUWwEomTEG5c8640lHHrDUCFGAJSiinrABwmRgeA0lzxWfkZuzdBv-xw9jrto4VNo3p0O-iBiUBGM8H8PofuPG70A23aQW84BIEG6D5CFXBxxjQ6W2oWxP2mlH9M7K-139GHhJXh9pd2aL9xY-r8m890nZN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963538671</pqid></control><display><type>article</type><title>Correlation between self-association modes and GTPase activation of dynamin</title><source>Springer Nature</source><creator>Binns, D D ; Barylko, B ; Grichine, N ; Atkinson, M A ; Helms, M K ; Jameson, D M ; Eccleston, J F ; Albanesi, J P</creator><creatorcontrib>Binns, D D ; Barylko, B ; Grichine, N ; Atkinson, M A ; Helms, M K ; Jameson, D M ; Eccleston, J F ; Albanesi, J P</creatorcontrib><description>The GTPase activity of dynamin is obligatorily coupled, by a mechanism yet unknown, to the internalization of clathrin-coated endocytic vesicles. Dynamin oligomerizes in vitro and in vivo and both its mechanical and enzymatic activities appear to be mediated by this self-assembly. In this study we demonstrate that dynamin is characterized by a tetramer/monomer equilibrium with an equilibrium constant of 1.67 x 10(17) M(-3). Stopped-flow fluorescence experiments show that the association rate constant for 2'(3')-O-N-methylanthraniloyl (mant)GTP is 7.0 x 10(-5) M(-1) s(-1) and the dissociation rate constant is 2.1 s(-1), whereas the dissociation rate constant for mantdeoxyGDP is 93 s(-1). We also demonstrate the cooperativity of dynamin binding and GTPase activation on a microtubule lattice. Our results indicate that dynamin self-association is not a sufficient condition for the expression of maximal GTPase activity, which suggests that dynamin molecules must be in the proper conformation or orientation if they are to form an active oligomer.</description><identifier>ISSN: 0277-8033</identifier><identifier>ISSN: 1572-3887</identifier><identifier>EISSN: 1573-4943</identifier><identifier>DOI: 10.1023/a:1021083211267</identifier><identifier>PMID: 10395446</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Animals ; Brain - enzymology ; Cattle ; Clathrin ; Coated vesicles ; Conformation ; Dose-Response Relationship, Drug ; Dynamin ; Dynamins ; Enzymatic activity ; Enzymes ; GTP Phosphohydrolases - metabolism ; Guanosine triphosphatases ; Internalization ; Kinetics ; Lattice vibration ; Microtubules - metabolism ; Models, Biological ; Molecular biology ; Oligomerization ; Proteins ; Self-assembly ; Self-association ; Sodium Chloride - pharmacology ; Time Factors ; Tubulin - metabolism ; Ultracentrifugation</subject><ispartof>Journal of Protein Chemistry, 1999-04, Vol.18 (3), p.277-290</ispartof><rights>Plenum Publishing Corporation 1999.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-dd9c9289e8779b561b17a503fffafbf0f1dda7696eb6979f9d766f27573680493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10395446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Binns, D D</creatorcontrib><creatorcontrib>Barylko, B</creatorcontrib><creatorcontrib>Grichine, N</creatorcontrib><creatorcontrib>Atkinson, M A</creatorcontrib><creatorcontrib>Helms, M K</creatorcontrib><creatorcontrib>Jameson, D M</creatorcontrib><creatorcontrib>Eccleston, J F</creatorcontrib><creatorcontrib>Albanesi, J P</creatorcontrib><title>Correlation between self-association modes and GTPase activation of dynamin</title><title>Journal of Protein Chemistry</title><addtitle>J Protein Chem</addtitle><description>The GTPase activity of dynamin is obligatorily coupled, by a mechanism yet unknown, to the internalization of clathrin-coated endocytic vesicles. Dynamin oligomerizes in vitro and in vivo and both its mechanical and enzymatic activities appear to be mediated by this self-assembly. In this study we demonstrate that dynamin is characterized by a tetramer/monomer equilibrium with an equilibrium constant of 1.67 x 10(17) M(-3). Stopped-flow fluorescence experiments show that the association rate constant for 2'(3')-O-N-methylanthraniloyl (mant)GTP is 7.0 x 10(-5) M(-1) s(-1) and the dissociation rate constant is 2.1 s(-1), whereas the dissociation rate constant for mantdeoxyGDP is 93 s(-1). We also demonstrate the cooperativity of dynamin binding and GTPase activation on a microtubule lattice. Our results indicate that dynamin self-association is not a sufficient condition for the expression of maximal GTPase activity, which suggests that dynamin molecules must be in the proper conformation or orientation if they are to form an active oligomer.</description><subject>Animals</subject><subject>Brain - enzymology</subject><subject>Cattle</subject><subject>Clathrin</subject><subject>Coated vesicles</subject><subject>Conformation</subject><subject>Dose-Response Relationship, Drug</subject><subject>Dynamin</subject><subject>Dynamins</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Guanosine triphosphatases</subject><subject>Internalization</subject><subject>Kinetics</subject><subject>Lattice vibration</subject><subject>Microtubules - metabolism</subject><subject>Models, Biological</subject><subject>Molecular biology</subject><subject>Oligomerization</subject><subject>Proteins</subject><subject>Self-assembly</subject><subject>Self-association</subject><subject>Sodium Chloride - pharmacology</subject><subject>Time Factors</subject><subject>Tubulin - metabolism</subject><subject>Ultracentrifugation</subject><issn>0277-8033</issn><issn>1572-3887</issn><issn>1573-4943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpdkDFPwzAUhC0EoqUws6GIgS3UjpNnmw1VUBCVYCiz5cTPUqokLnYK6r8nKB2A6Yb77vTeEXLJ6C2jGZ-bu0EYlTxjLANxRKasEDzNVc6PyZRmQqSScj4hZzFuKKVKSnpKJoxyVeQ5TMnLwoeAjelr3yUl9l-IXRKxcamJ0Vf1aLTeYkxMZ5Pl-s1ETEzV15-j511i951p6-6cnDjTRLw46Iy8Pz6sF0_p6nX5vLhfpVVeQJ9aqyqVSYVSCFUWwEomTEG5c8640lHHrDUCFGAJSiinrABwmRgeA0lzxWfkZuzdBv-xw9jrto4VNo3p0O-iBiUBGM8H8PofuPG70A23aQW84BIEG6D5CFXBxxjQ6W2oWxP2mlH9M7K-139GHhJXh9pd2aL9xY-r8m890nZN</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>Binns, D D</creator><creator>Barylko, B</creator><creator>Grichine, N</creator><creator>Atkinson, M A</creator><creator>Helms, M K</creator><creator>Jameson, D M</creator><creator>Eccleston, J F</creator><creator>Albanesi, J P</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19990401</creationdate><title>Correlation between self-association modes and GTPase activation of dynamin</title><author>Binns, D D ; Barylko, B ; Grichine, N ; Atkinson, M A ; Helms, M K ; Jameson, D M ; Eccleston, J F ; Albanesi, J P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-dd9c9289e8779b561b17a503fffafbf0f1dda7696eb6979f9d766f27573680493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animals</topic><topic>Brain - enzymology</topic><topic>Cattle</topic><topic>Clathrin</topic><topic>Coated vesicles</topic><topic>Conformation</topic><topic>Dose-Response Relationship, Drug</topic><topic>Dynamin</topic><topic>Dynamins</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Guanosine triphosphatases</topic><topic>Internalization</topic><topic>Kinetics</topic><topic>Lattice vibration</topic><topic>Microtubules - metabolism</topic><topic>Models, Biological</topic><topic>Molecular biology</topic><topic>Oligomerization</topic><topic>Proteins</topic><topic>Self-assembly</topic><topic>Self-association</topic><topic>Sodium Chloride - pharmacology</topic><topic>Time Factors</topic><topic>Tubulin - metabolism</topic><topic>Ultracentrifugation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binns, D D</creatorcontrib><creatorcontrib>Barylko, B</creatorcontrib><creatorcontrib>Grichine, N</creatorcontrib><creatorcontrib>Atkinson, M A</creatorcontrib><creatorcontrib>Helms, M K</creatorcontrib><creatorcontrib>Jameson, D M</creatorcontrib><creatorcontrib>Eccleston, J F</creatorcontrib><creatorcontrib>Albanesi, J P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Protein Chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binns, D D</au><au>Barylko, B</au><au>Grichine, N</au><au>Atkinson, M A</au><au>Helms, M K</au><au>Jameson, D M</au><au>Eccleston, J F</au><au>Albanesi, J P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation between self-association modes and GTPase activation of dynamin</atitle><jtitle>Journal of Protein Chemistry</jtitle><addtitle>J Protein Chem</addtitle><date>1999-04-01</date><risdate>1999</risdate><volume>18</volume><issue>3</issue><spage>277</spage><epage>290</epage><pages>277-290</pages><issn>0277-8033</issn><issn>1572-3887</issn><eissn>1573-4943</eissn><abstract>The GTPase activity of dynamin is obligatorily coupled, by a mechanism yet unknown, to the internalization of clathrin-coated endocytic vesicles. Dynamin oligomerizes in vitro and in vivo and both its mechanical and enzymatic activities appear to be mediated by this self-assembly. In this study we demonstrate that dynamin is characterized by a tetramer/monomer equilibrium with an equilibrium constant of 1.67 x 10(17) M(-3). Stopped-flow fluorescence experiments show that the association rate constant for 2'(3')-O-N-methylanthraniloyl (mant)GTP is 7.0 x 10(-5) M(-1) s(-1) and the dissociation rate constant is 2.1 s(-1), whereas the dissociation rate constant for mantdeoxyGDP is 93 s(-1). We also demonstrate the cooperativity of dynamin binding and GTPase activation on a microtubule lattice. Our results indicate that dynamin self-association is not a sufficient condition for the expression of maximal GTPase activity, which suggests that dynamin molecules must be in the proper conformation or orientation if they are to form an active oligomer.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>10395446</pmid><doi>10.1023/a:1021083211267</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-8033
ispartof Journal of Protein Chemistry, 1999-04, Vol.18 (3), p.277-290
issn 0277-8033
1572-3887
1573-4943
language eng
recordid cdi_proquest_miscellaneous_69866134
source Springer Nature
subjects Animals
Brain - enzymology
Cattle
Clathrin
Coated vesicles
Conformation
Dose-Response Relationship, Drug
Dynamin
Dynamins
Enzymatic activity
Enzymes
GTP Phosphohydrolases - metabolism
Guanosine triphosphatases
Internalization
Kinetics
Lattice vibration
Microtubules - metabolism
Models, Biological
Molecular biology
Oligomerization
Proteins
Self-assembly
Self-association
Sodium Chloride - pharmacology
Time Factors
Tubulin - metabolism
Ultracentrifugation
title Correlation between self-association modes and GTPase activation of dynamin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20between%20self-association%20modes%20and%20GTPase%20activation%20of%20dynamin&rft.jtitle=Journal%20of%20Protein%20Chemistry&rft.au=Binns,%20D%20D&rft.date=1999-04-01&rft.volume=18&rft.issue=3&rft.spage=277&rft.epage=290&rft.pages=277-290&rft.issn=0277-8033&rft.eissn=1573-4943&rft_id=info:doi/10.1023/a:1021083211267&rft_dat=%3Cproquest_cross%3E2624135141%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-dd9c9289e8779b561b17a503fffafbf0f1dda7696eb6979f9d766f27573680493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=963538671&rft_id=info:pmid/10395446&rfr_iscdi=true