Loading…
Correlation between self-association modes and GTPase activation of dynamin
The GTPase activity of dynamin is obligatorily coupled, by a mechanism yet unknown, to the internalization of clathrin-coated endocytic vesicles. Dynamin oligomerizes in vitro and in vivo and both its mechanical and enzymatic activities appear to be mediated by this self-assembly. In this study we d...
Saved in:
Published in: | Journal of Protein Chemistry 1999-04, Vol.18 (3), p.277-290 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-dd9c9289e8779b561b17a503fffafbf0f1dda7696eb6979f9d766f27573680493 |
---|---|
cites | |
container_end_page | 290 |
container_issue | 3 |
container_start_page | 277 |
container_title | Journal of Protein Chemistry |
container_volume | 18 |
creator | Binns, D D Barylko, B Grichine, N Atkinson, M A Helms, M K Jameson, D M Eccleston, J F Albanesi, J P |
description | The GTPase activity of dynamin is obligatorily coupled, by a mechanism yet unknown, to the internalization of clathrin-coated endocytic vesicles. Dynamin oligomerizes in vitro and in vivo and both its mechanical and enzymatic activities appear to be mediated by this self-assembly. In this study we demonstrate that dynamin is characterized by a tetramer/monomer equilibrium with an equilibrium constant of 1.67 x 10(17) M(-3). Stopped-flow fluorescence experiments show that the association rate constant for 2'(3')-O-N-methylanthraniloyl (mant)GTP is 7.0 x 10(-5) M(-1) s(-1) and the dissociation rate constant is 2.1 s(-1), whereas the dissociation rate constant for mantdeoxyGDP is 93 s(-1). We also demonstrate the cooperativity of dynamin binding and GTPase activation on a microtubule lattice. Our results indicate that dynamin self-association is not a sufficient condition for the expression of maximal GTPase activity, which suggests that dynamin molecules must be in the proper conformation or orientation if they are to form an active oligomer. |
doi_str_mv | 10.1023/a:1021083211267 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69866134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624135141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-dd9c9289e8779b561b17a503fffafbf0f1dda7696eb6979f9d766f27573680493</originalsourceid><addsrcrecordid>eNpdkDFPwzAUhC0EoqUws6GIgS3UjpNnmw1VUBCVYCiz5cTPUqokLnYK6r8nKB2A6Yb77vTeEXLJ6C2jGZ-bu0EYlTxjLANxRKasEDzNVc6PyZRmQqSScj4hZzFuKKVKSnpKJoxyVeQ5TMnLwoeAjelr3yUl9l-IXRKxcamJ0Vf1aLTeYkxMZ5Pl-s1ETEzV15-j511i951p6-6cnDjTRLw46Iy8Pz6sF0_p6nX5vLhfpVVeQJ9aqyqVSYVSCFUWwEomTEG5c8640lHHrDUCFGAJSiinrABwmRgeA0lzxWfkZuzdBv-xw9jrto4VNo3p0O-iBiUBGM8H8PofuPG70A23aQW84BIEG6D5CFXBxxjQ6W2oWxP2mlH9M7K-139GHhJXh9pd2aL9xY-r8m890nZN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963538671</pqid></control><display><type>article</type><title>Correlation between self-association modes and GTPase activation of dynamin</title><source>Springer Nature</source><creator>Binns, D D ; Barylko, B ; Grichine, N ; Atkinson, M A ; Helms, M K ; Jameson, D M ; Eccleston, J F ; Albanesi, J P</creator><creatorcontrib>Binns, D D ; Barylko, B ; Grichine, N ; Atkinson, M A ; Helms, M K ; Jameson, D M ; Eccleston, J F ; Albanesi, J P</creatorcontrib><description>The GTPase activity of dynamin is obligatorily coupled, by a mechanism yet unknown, to the internalization of clathrin-coated endocytic vesicles. Dynamin oligomerizes in vitro and in vivo and both its mechanical and enzymatic activities appear to be mediated by this self-assembly. In this study we demonstrate that dynamin is characterized by a tetramer/monomer equilibrium with an equilibrium constant of 1.67 x 10(17) M(-3). Stopped-flow fluorescence experiments show that the association rate constant for 2'(3')-O-N-methylanthraniloyl (mant)GTP is 7.0 x 10(-5) M(-1) s(-1) and the dissociation rate constant is 2.1 s(-1), whereas the dissociation rate constant for mantdeoxyGDP is 93 s(-1). We also demonstrate the cooperativity of dynamin binding and GTPase activation on a microtubule lattice. Our results indicate that dynamin self-association is not a sufficient condition for the expression of maximal GTPase activity, which suggests that dynamin molecules must be in the proper conformation or orientation if they are to form an active oligomer.</description><identifier>ISSN: 0277-8033</identifier><identifier>ISSN: 1572-3887</identifier><identifier>EISSN: 1573-4943</identifier><identifier>DOI: 10.1023/a:1021083211267</identifier><identifier>PMID: 10395446</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Animals ; Brain - enzymology ; Cattle ; Clathrin ; Coated vesicles ; Conformation ; Dose-Response Relationship, Drug ; Dynamin ; Dynamins ; Enzymatic activity ; Enzymes ; GTP Phosphohydrolases - metabolism ; Guanosine triphosphatases ; Internalization ; Kinetics ; Lattice vibration ; Microtubules - metabolism ; Models, Biological ; Molecular biology ; Oligomerization ; Proteins ; Self-assembly ; Self-association ; Sodium Chloride - pharmacology ; Time Factors ; Tubulin - metabolism ; Ultracentrifugation</subject><ispartof>Journal of Protein Chemistry, 1999-04, Vol.18 (3), p.277-290</ispartof><rights>Plenum Publishing Corporation 1999.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-dd9c9289e8779b561b17a503fffafbf0f1dda7696eb6979f9d766f27573680493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10395446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Binns, D D</creatorcontrib><creatorcontrib>Barylko, B</creatorcontrib><creatorcontrib>Grichine, N</creatorcontrib><creatorcontrib>Atkinson, M A</creatorcontrib><creatorcontrib>Helms, M K</creatorcontrib><creatorcontrib>Jameson, D M</creatorcontrib><creatorcontrib>Eccleston, J F</creatorcontrib><creatorcontrib>Albanesi, J P</creatorcontrib><title>Correlation between self-association modes and GTPase activation of dynamin</title><title>Journal of Protein Chemistry</title><addtitle>J Protein Chem</addtitle><description>The GTPase activity of dynamin is obligatorily coupled, by a mechanism yet unknown, to the internalization of clathrin-coated endocytic vesicles. Dynamin oligomerizes in vitro and in vivo and both its mechanical and enzymatic activities appear to be mediated by this self-assembly. In this study we demonstrate that dynamin is characterized by a tetramer/monomer equilibrium with an equilibrium constant of 1.67 x 10(17) M(-3). Stopped-flow fluorescence experiments show that the association rate constant for 2'(3')-O-N-methylanthraniloyl (mant)GTP is 7.0 x 10(-5) M(-1) s(-1) and the dissociation rate constant is 2.1 s(-1), whereas the dissociation rate constant for mantdeoxyGDP is 93 s(-1). We also demonstrate the cooperativity of dynamin binding and GTPase activation on a microtubule lattice. Our results indicate that dynamin self-association is not a sufficient condition for the expression of maximal GTPase activity, which suggests that dynamin molecules must be in the proper conformation or orientation if they are to form an active oligomer.</description><subject>Animals</subject><subject>Brain - enzymology</subject><subject>Cattle</subject><subject>Clathrin</subject><subject>Coated vesicles</subject><subject>Conformation</subject><subject>Dose-Response Relationship, Drug</subject><subject>Dynamin</subject><subject>Dynamins</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Guanosine triphosphatases</subject><subject>Internalization</subject><subject>Kinetics</subject><subject>Lattice vibration</subject><subject>Microtubules - metabolism</subject><subject>Models, Biological</subject><subject>Molecular biology</subject><subject>Oligomerization</subject><subject>Proteins</subject><subject>Self-assembly</subject><subject>Self-association</subject><subject>Sodium Chloride - pharmacology</subject><subject>Time Factors</subject><subject>Tubulin - metabolism</subject><subject>Ultracentrifugation</subject><issn>0277-8033</issn><issn>1572-3887</issn><issn>1573-4943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpdkDFPwzAUhC0EoqUws6GIgS3UjpNnmw1VUBCVYCiz5cTPUqokLnYK6r8nKB2A6Yb77vTeEXLJ6C2jGZ-bu0EYlTxjLANxRKasEDzNVc6PyZRmQqSScj4hZzFuKKVKSnpKJoxyVeQ5TMnLwoeAjelr3yUl9l-IXRKxcamJ0Vf1aLTeYkxMZ5Pl-s1ETEzV15-j511i951p6-6cnDjTRLw46Iy8Pz6sF0_p6nX5vLhfpVVeQJ9aqyqVSYVSCFUWwEomTEG5c8640lHHrDUCFGAJSiinrABwmRgeA0lzxWfkZuzdBv-xw9jrto4VNo3p0O-iBiUBGM8H8PofuPG70A23aQW84BIEG6D5CFXBxxjQ6W2oWxP2mlH9M7K-139GHhJXh9pd2aL9xY-r8m890nZN</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>Binns, D D</creator><creator>Barylko, B</creator><creator>Grichine, N</creator><creator>Atkinson, M A</creator><creator>Helms, M K</creator><creator>Jameson, D M</creator><creator>Eccleston, J F</creator><creator>Albanesi, J P</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19990401</creationdate><title>Correlation between self-association modes and GTPase activation of dynamin</title><author>Binns, D D ; Barylko, B ; Grichine, N ; Atkinson, M A ; Helms, M K ; Jameson, D M ; Eccleston, J F ; Albanesi, J P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-dd9c9289e8779b561b17a503fffafbf0f1dda7696eb6979f9d766f27573680493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animals</topic><topic>Brain - enzymology</topic><topic>Cattle</topic><topic>Clathrin</topic><topic>Coated vesicles</topic><topic>Conformation</topic><topic>Dose-Response Relationship, Drug</topic><topic>Dynamin</topic><topic>Dynamins</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Guanosine triphosphatases</topic><topic>Internalization</topic><topic>Kinetics</topic><topic>Lattice vibration</topic><topic>Microtubules - metabolism</topic><topic>Models, Biological</topic><topic>Molecular biology</topic><topic>Oligomerization</topic><topic>Proteins</topic><topic>Self-assembly</topic><topic>Self-association</topic><topic>Sodium Chloride - pharmacology</topic><topic>Time Factors</topic><topic>Tubulin - metabolism</topic><topic>Ultracentrifugation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binns, D D</creatorcontrib><creatorcontrib>Barylko, B</creatorcontrib><creatorcontrib>Grichine, N</creatorcontrib><creatorcontrib>Atkinson, M A</creatorcontrib><creatorcontrib>Helms, M K</creatorcontrib><creatorcontrib>Jameson, D M</creatorcontrib><creatorcontrib>Eccleston, J F</creatorcontrib><creatorcontrib>Albanesi, J P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Protein Chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binns, D D</au><au>Barylko, B</au><au>Grichine, N</au><au>Atkinson, M A</au><au>Helms, M K</au><au>Jameson, D M</au><au>Eccleston, J F</au><au>Albanesi, J P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation between self-association modes and GTPase activation of dynamin</atitle><jtitle>Journal of Protein Chemistry</jtitle><addtitle>J Protein Chem</addtitle><date>1999-04-01</date><risdate>1999</risdate><volume>18</volume><issue>3</issue><spage>277</spage><epage>290</epage><pages>277-290</pages><issn>0277-8033</issn><issn>1572-3887</issn><eissn>1573-4943</eissn><abstract>The GTPase activity of dynamin is obligatorily coupled, by a mechanism yet unknown, to the internalization of clathrin-coated endocytic vesicles. Dynamin oligomerizes in vitro and in vivo and both its mechanical and enzymatic activities appear to be mediated by this self-assembly. In this study we demonstrate that dynamin is characterized by a tetramer/monomer equilibrium with an equilibrium constant of 1.67 x 10(17) M(-3). Stopped-flow fluorescence experiments show that the association rate constant for 2'(3')-O-N-methylanthraniloyl (mant)GTP is 7.0 x 10(-5) M(-1) s(-1) and the dissociation rate constant is 2.1 s(-1), whereas the dissociation rate constant for mantdeoxyGDP is 93 s(-1). We also demonstrate the cooperativity of dynamin binding and GTPase activation on a microtubule lattice. Our results indicate that dynamin self-association is not a sufficient condition for the expression of maximal GTPase activity, which suggests that dynamin molecules must be in the proper conformation or orientation if they are to form an active oligomer.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>10395446</pmid><doi>10.1023/a:1021083211267</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-8033 |
ispartof | Journal of Protein Chemistry, 1999-04, Vol.18 (3), p.277-290 |
issn | 0277-8033 1572-3887 1573-4943 |
language | eng |
recordid | cdi_proquest_miscellaneous_69866134 |
source | Springer Nature |
subjects | Animals Brain - enzymology Cattle Clathrin Coated vesicles Conformation Dose-Response Relationship, Drug Dynamin Dynamins Enzymatic activity Enzymes GTP Phosphohydrolases - metabolism Guanosine triphosphatases Internalization Kinetics Lattice vibration Microtubules - metabolism Models, Biological Molecular biology Oligomerization Proteins Self-assembly Self-association Sodium Chloride - pharmacology Time Factors Tubulin - metabolism Ultracentrifugation |
title | Correlation between self-association modes and GTPase activation of dynamin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20between%20self-association%20modes%20and%20GTPase%20activation%20of%20dynamin&rft.jtitle=Journal%20of%20Protein%20Chemistry&rft.au=Binns,%20D%20D&rft.date=1999-04-01&rft.volume=18&rft.issue=3&rft.spage=277&rft.epage=290&rft.pages=277-290&rft.issn=0277-8033&rft.eissn=1573-4943&rft_id=info:doi/10.1023/a:1021083211267&rft_dat=%3Cproquest_cross%3E2624135141%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-dd9c9289e8779b561b17a503fffafbf0f1dda7696eb6979f9d766f27573680493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=963538671&rft_id=info:pmid/10395446&rfr_iscdi=true |