Loading…
A “teardown” method to create large mesotunnels on the pore walls of ordered mesoporous silica
A “teardown” method to create large mesotunnels (∼9 nm) on the pore walls of ordered mesoporous silicas is demonstrated by digesting the organic constituents from polymer–silicate nanocomposites. The ordered mesostructured polymer–silicate composites were first obtained via the evaporation-induced t...
Saved in:
Published in: | Journal of colloid and interface science 2008-12, Vol.328 (2), p.338-343 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A “teardown” method to create large mesotunnels (∼9 nm) on the pore walls of ordered mesoporous silicas is demonstrated by digesting the organic constituents from polymer–silicate nanocomposites. The ordered mesostructured polymer–silicate composites were first obtained
via the evaporation-induced triconstituent co-assembly method by using a low-molecular-weight phenolic resin (resols) as an organic precursor; prehydrolyzed TEOS as an inorganic precursor, and triblock copolymer F127 as a template. All of organic components including F127 and phenolic resins are removed by the microwave digestion (MWD) method from mesostructured polymer–silica composites. While the removal of triblock copolymer F127 generates main pore channels, the phenolic resins can also be torn down from the pore walls, yielding mesotunnels between the channels. The resulting silica products exhibit ordered 2-D hexagonal mesostructure, large pore volume (up to 1.92 cm
3/g), and very large pore size (up to 22.9 nm), which is even larger than their mesostructural cell parameter (14.2 nm). TEM images confirm the existence of mesotunnels on the silica pore walls. FT-IR and
29Si solid-state NMR results reveal that these silica products have a large number of silanol groups.
Synthesis of ordered mesoporous silicates with large mesotunnels on the pore walls were demonstrated by a new “teardown” method, via microwave-assisted digesting the organic constituents from polymer–silicate nanocomposites. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2008.09.043 |