Loading…

Invariant quantities in shear flow

The dynamics of systems out of thermal equilibrium is usually treated on a case-by-case basis without knowledge of fundamental and universal principles. We address this problem for a class of driven steady states, namely, those mechanically driven at the boundaries such as complex fluids under shear...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2008-12, Vol.101 (24), p.240601-240601, Article 240601
Main Authors: Baule, A, Evans, R M L
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c410t-eba550840d1e10e6816df999faf07d7718d69cb32f61e7322a0a80d3887de6a83
cites cdi_FETCH-LOGICAL-c410t-eba550840d1e10e6816df999faf07d7718d69cb32f61e7322a0a80d3887de6a83
container_end_page 240601
container_issue 24
container_start_page 240601
container_title Physical review letters
container_volume 101
creator Baule, A
Evans, R M L
description The dynamics of systems out of thermal equilibrium is usually treated on a case-by-case basis without knowledge of fundamental and universal principles. We address this problem for a class of driven steady states, namely, those mechanically driven at the boundaries such as complex fluids under shear. From a nonequilibrium counterpart to detailed balance (NCDB) we derive a remarkably simple set of invariant quantities which remain unchanged when the system is driven. These new nonequilibrium relations are both exact and valid arbitrarily far from equilibrium. Furthermore, they enable the systematic calculation of transition rates in driven systems with state spaces of arbitrary connectivity.
doi_str_mv 10.1103/PhysRevLett.101.240601
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69925315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69925315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-eba550840d1e10e6816df999faf07d7718d69cb32f61e7322a0a80d3887de6a83</originalsourceid><addsrcrecordid>eNpNkNtKw0AQhhdRbK2-QgleeJc6k032cCnFQ6GgiF4v2-wsjaRJu5tU-vZGWtCb-WH4D_AxNkWYIQK_f1sf4jvtl9R1MwScZTkIwDM2RpA6lYj5ORsDcEw1gByxqxi_AAAzoS7ZCDUiF6DH7HbR7G2obNMlu364VVdRTKomiWuyIfF1-33NLrytI92cdMI-nx4_5i_p8vV5MX9YpmWO0KW0skUBKgeHhEBCoXBea-2tB-mkROWELlc88wJJ8iyzYBU4rpR0JKziE3Z37N2GdtdT7MymiiXVtW2o7aMRWmcFx2IwiqOxDG2MgbzZhmpjw8EgmF865h-d4YfmSGcITk8L_WpD7i92wsF_AJNTYio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69925315</pqid></control><display><type>article</type><title>Invariant quantities in shear flow</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Baule, A ; Evans, R M L</creator><creatorcontrib>Baule, A ; Evans, R M L</creatorcontrib><description>The dynamics of systems out of thermal equilibrium is usually treated on a case-by-case basis without knowledge of fundamental and universal principles. We address this problem for a class of driven steady states, namely, those mechanically driven at the boundaries such as complex fluids under shear. From a nonequilibrium counterpart to detailed balance (NCDB) we derive a remarkably simple set of invariant quantities which remain unchanged when the system is driven. These new nonequilibrium relations are both exact and valid arbitrarily far from equilibrium. Furthermore, they enable the systematic calculation of transition rates in driven systems with state spaces of arbitrary connectivity.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.101.240601</identifier><identifier>PMID: 19113609</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2008-12, Vol.101 (24), p.240601-240601, Article 240601</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-eba550840d1e10e6816df999faf07d7718d69cb32f61e7322a0a80d3887de6a83</citedby><cites>FETCH-LOGICAL-c410t-eba550840d1e10e6816df999faf07d7718d69cb32f61e7322a0a80d3887de6a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19113609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baule, A</creatorcontrib><creatorcontrib>Evans, R M L</creatorcontrib><title>Invariant quantities in shear flow</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The dynamics of systems out of thermal equilibrium is usually treated on a case-by-case basis without knowledge of fundamental and universal principles. We address this problem for a class of driven steady states, namely, those mechanically driven at the boundaries such as complex fluids under shear. From a nonequilibrium counterpart to detailed balance (NCDB) we derive a remarkably simple set of invariant quantities which remain unchanged when the system is driven. These new nonequilibrium relations are both exact and valid arbitrarily far from equilibrium. Furthermore, they enable the systematic calculation of transition rates in driven systems with state spaces of arbitrary connectivity.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpNkNtKw0AQhhdRbK2-QgleeJc6k032cCnFQ6GgiF4v2-wsjaRJu5tU-vZGWtCb-WH4D_AxNkWYIQK_f1sf4jvtl9R1MwScZTkIwDM2RpA6lYj5ORsDcEw1gByxqxi_AAAzoS7ZCDUiF6DH7HbR7G2obNMlu364VVdRTKomiWuyIfF1-33NLrytI92cdMI-nx4_5i_p8vV5MX9YpmWO0KW0skUBKgeHhEBCoXBea-2tB-mkROWELlc88wJJ8iyzYBU4rpR0JKziE3Z37N2GdtdT7MymiiXVtW2o7aMRWmcFx2IwiqOxDG2MgbzZhmpjw8EgmF865h-d4YfmSGcITk8L_WpD7i92wsF_AJNTYio</recordid><startdate>20081212</startdate><enddate>20081212</enddate><creator>Baule, A</creator><creator>Evans, R M L</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20081212</creationdate><title>Invariant quantities in shear flow</title><author>Baule, A ; Evans, R M L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-eba550840d1e10e6816df999faf07d7718d69cb32f61e7322a0a80d3887de6a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baule, A</creatorcontrib><creatorcontrib>Evans, R M L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baule, A</au><au>Evans, R M L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant quantities in shear flow</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2008-12-12</date><risdate>2008</risdate><volume>101</volume><issue>24</issue><spage>240601</spage><epage>240601</epage><pages>240601-240601</pages><artnum>240601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The dynamics of systems out of thermal equilibrium is usually treated on a case-by-case basis without knowledge of fundamental and universal principles. We address this problem for a class of driven steady states, namely, those mechanically driven at the boundaries such as complex fluids under shear. From a nonequilibrium counterpart to detailed balance (NCDB) we derive a remarkably simple set of invariant quantities which remain unchanged when the system is driven. These new nonequilibrium relations are both exact and valid arbitrarily far from equilibrium. Furthermore, they enable the systematic calculation of transition rates in driven systems with state spaces of arbitrary connectivity.</abstract><cop>United States</cop><pmid>19113609</pmid><doi>10.1103/PhysRevLett.101.240601</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2008-12, Vol.101 (24), p.240601-240601, Article 240601
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_69925315
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Invariant quantities in shear flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T15%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20quantities%20in%20shear%20flow&rft.jtitle=Physical%20review%20letters&rft.au=Baule,%20A&rft.date=2008-12-12&rft.volume=101&rft.issue=24&rft.spage=240601&rft.epage=240601&rft.pages=240601-240601&rft.artnum=240601&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.101.240601&rft_dat=%3Cproquest_cross%3E69925315%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-eba550840d1e10e6816df999faf07d7718d69cb32f61e7322a0a80d3887de6a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69925315&rft_id=info:pmid/19113609&rfr_iscdi=true