Loading…
Invariant quantities in shear flow
The dynamics of systems out of thermal equilibrium is usually treated on a case-by-case basis without knowledge of fundamental and universal principles. We address this problem for a class of driven steady states, namely, those mechanically driven at the boundaries such as complex fluids under shear...
Saved in:
Published in: | Physical review letters 2008-12, Vol.101 (24), p.240601-240601, Article 240601 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c410t-eba550840d1e10e6816df999faf07d7718d69cb32f61e7322a0a80d3887de6a83 |
---|---|
cites | cdi_FETCH-LOGICAL-c410t-eba550840d1e10e6816df999faf07d7718d69cb32f61e7322a0a80d3887de6a83 |
container_end_page | 240601 |
container_issue | 24 |
container_start_page | 240601 |
container_title | Physical review letters |
container_volume | 101 |
creator | Baule, A Evans, R M L |
description | The dynamics of systems out of thermal equilibrium is usually treated on a case-by-case basis without knowledge of fundamental and universal principles. We address this problem for a class of driven steady states, namely, those mechanically driven at the boundaries such as complex fluids under shear. From a nonequilibrium counterpart to detailed balance (NCDB) we derive a remarkably simple set of invariant quantities which remain unchanged when the system is driven. These new nonequilibrium relations are both exact and valid arbitrarily far from equilibrium. Furthermore, they enable the systematic calculation of transition rates in driven systems with state spaces of arbitrary connectivity. |
doi_str_mv | 10.1103/PhysRevLett.101.240601 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69925315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69925315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-eba550840d1e10e6816df999faf07d7718d69cb32f61e7322a0a80d3887de6a83</originalsourceid><addsrcrecordid>eNpNkNtKw0AQhhdRbK2-QgleeJc6k032cCnFQ6GgiF4v2-wsjaRJu5tU-vZGWtCb-WH4D_AxNkWYIQK_f1sf4jvtl9R1MwScZTkIwDM2RpA6lYj5ORsDcEw1gByxqxi_AAAzoS7ZCDUiF6DH7HbR7G2obNMlu364VVdRTKomiWuyIfF1-33NLrytI92cdMI-nx4_5i_p8vV5MX9YpmWO0KW0skUBKgeHhEBCoXBea-2tB-mkROWELlc88wJJ8iyzYBU4rpR0JKziE3Z37N2GdtdT7MymiiXVtW2o7aMRWmcFx2IwiqOxDG2MgbzZhmpjw8EgmF865h-d4YfmSGcITk8L_WpD7i92wsF_AJNTYio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69925315</pqid></control><display><type>article</type><title>Invariant quantities in shear flow</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Baule, A ; Evans, R M L</creator><creatorcontrib>Baule, A ; Evans, R M L</creatorcontrib><description>The dynamics of systems out of thermal equilibrium is usually treated on a case-by-case basis without knowledge of fundamental and universal principles. We address this problem for a class of driven steady states, namely, those mechanically driven at the boundaries such as complex fluids under shear. From a nonequilibrium counterpart to detailed balance (NCDB) we derive a remarkably simple set of invariant quantities which remain unchanged when the system is driven. These new nonequilibrium relations are both exact and valid arbitrarily far from equilibrium. Furthermore, they enable the systematic calculation of transition rates in driven systems with state spaces of arbitrary connectivity.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.101.240601</identifier><identifier>PMID: 19113609</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2008-12, Vol.101 (24), p.240601-240601, Article 240601</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-eba550840d1e10e6816df999faf07d7718d69cb32f61e7322a0a80d3887de6a83</citedby><cites>FETCH-LOGICAL-c410t-eba550840d1e10e6816df999faf07d7718d69cb32f61e7322a0a80d3887de6a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19113609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baule, A</creatorcontrib><creatorcontrib>Evans, R M L</creatorcontrib><title>Invariant quantities in shear flow</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The dynamics of systems out of thermal equilibrium is usually treated on a case-by-case basis without knowledge of fundamental and universal principles. We address this problem for a class of driven steady states, namely, those mechanically driven at the boundaries such as complex fluids under shear. From a nonequilibrium counterpart to detailed balance (NCDB) we derive a remarkably simple set of invariant quantities which remain unchanged when the system is driven. These new nonequilibrium relations are both exact and valid arbitrarily far from equilibrium. Furthermore, they enable the systematic calculation of transition rates in driven systems with state spaces of arbitrary connectivity.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpNkNtKw0AQhhdRbK2-QgleeJc6k032cCnFQ6GgiF4v2-wsjaRJu5tU-vZGWtCb-WH4D_AxNkWYIQK_f1sf4jvtl9R1MwScZTkIwDM2RpA6lYj5ORsDcEw1gByxqxi_AAAzoS7ZCDUiF6DH7HbR7G2obNMlu364VVdRTKomiWuyIfF1-33NLrytI92cdMI-nx4_5i_p8vV5MX9YpmWO0KW0skUBKgeHhEBCoXBea-2tB-mkROWELlc88wJJ8iyzYBU4rpR0JKziE3Z37N2GdtdT7MymiiXVtW2o7aMRWmcFx2IwiqOxDG2MgbzZhmpjw8EgmF865h-d4YfmSGcITk8L_WpD7i92wsF_AJNTYio</recordid><startdate>20081212</startdate><enddate>20081212</enddate><creator>Baule, A</creator><creator>Evans, R M L</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20081212</creationdate><title>Invariant quantities in shear flow</title><author>Baule, A ; Evans, R M L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-eba550840d1e10e6816df999faf07d7718d69cb32f61e7322a0a80d3887de6a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baule, A</creatorcontrib><creatorcontrib>Evans, R M L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baule, A</au><au>Evans, R M L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant quantities in shear flow</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2008-12-12</date><risdate>2008</risdate><volume>101</volume><issue>24</issue><spage>240601</spage><epage>240601</epage><pages>240601-240601</pages><artnum>240601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The dynamics of systems out of thermal equilibrium is usually treated on a case-by-case basis without knowledge of fundamental and universal principles. We address this problem for a class of driven steady states, namely, those mechanically driven at the boundaries such as complex fluids under shear. From a nonequilibrium counterpart to detailed balance (NCDB) we derive a remarkably simple set of invariant quantities which remain unchanged when the system is driven. These new nonequilibrium relations are both exact and valid arbitrarily far from equilibrium. Furthermore, they enable the systematic calculation of transition rates in driven systems with state spaces of arbitrary connectivity.</abstract><cop>United States</cop><pmid>19113609</pmid><doi>10.1103/PhysRevLett.101.240601</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2008-12, Vol.101 (24), p.240601-240601, Article 240601 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_69925315 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Invariant quantities in shear flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T15%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20quantities%20in%20shear%20flow&rft.jtitle=Physical%20review%20letters&rft.au=Baule,%20A&rft.date=2008-12-12&rft.volume=101&rft.issue=24&rft.spage=240601&rft.epage=240601&rft.pages=240601-240601&rft.artnum=240601&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.101.240601&rft_dat=%3Cproquest_cross%3E69925315%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-eba550840d1e10e6816df999faf07d7718d69cb32f61e7322a0a80d3887de6a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69925315&rft_id=info:pmid/19113609&rfr_iscdi=true |