Loading…

Functional and Structural Studies of Wild Type SOX9 and Mutations Causing Campomelic Dysplasia

In humans, mutations in SOX9 result in a skeletal malformation syndrome, campomelic dysplasia (CD). The present study investigated two major classes of CD mutations: 1) point mutations in the high mobility group (HMG) domain and 2) truncations and frameshifts that alter the C terminus of the protein...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1999-08, Vol.274 (34), p.24023-24030
Main Authors: McDowall, Sharon, Argentaro, Anthony, Ranganathan, Shoba, Weller, Polly, Mertin, Sabine, Mansour, Sahar, Tolmie, John, Harley, Vincent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In humans, mutations in SOX9 result in a skeletal malformation syndrome, campomelic dysplasia (CD). The present study investigated two major classes of CD mutations: 1) point mutations in the high mobility group (HMG) domain and 2) truncations and frameshifts that alter the C terminus of the protein. We analyzed the effect of one novel mutation and three other point mutations in the HMG domain of SOX9 on the DNA binding and DNA bending properties of the protein. The F12L mutant HMG domain shows negligible DNA binding, the H65Y mutant shows minimal DNA binding, whereas the A19V mutant shows near wild type DNA binding and bends DNA normally. Interestingly, the P70R mutant has altered DNA binding specificity, but also bends DNA normally. The effects of the point mutations were interpreted using a molecular model of the SOX9 HMG domain. We analyzed the effects upon transcription of mutations resembling the truncation and frameshift mutations in CD patients, and found that progressive deletion of the C terminus causes progressive loss of transactivation. Maximal transactivation by SOX9 requires both the C-terminal domain rich in proline, glutamine, and serine and the adjacent domain composed entirely of proline, glutamine, and alanine. Thus, CD arises by mutations that interfere with DNA binding by SOX9 or truncate the C-terminal transactivation domain and thereby impede the ability of SOX9 to activate target genes during organ development.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.274.34.24023