Loading…

Methods for Detecting Silicones in Biological Matrixes

Methods for analyzing for silicon and silicone in biological matrixes were developed. A silicone-specific technique involved microwave digestion of samples in acid solution to rapidly break down the biological matrix while hydrolyzing silicones to monomeric species. The resulting monomeric silanol s...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 1999-08, Vol.71 (15), p.3054-3060
Main Authors: Kennan, John J, McCann Breen, Laurie L, Lane, Thomas H, Taylor, Richard B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Methods for analyzing for silicon and silicone in biological matrixes were developed. A silicone-specific technique involved microwave digestion of samples in acid solution to rapidly break down the biological matrix while hydrolyzing silicones to monomeric species. The resulting monomeric silanol species were then capped with trimethylsilyl groups, extracted into hexamethyldisiloxane, and analyzed by gas chromatography. In serum, positive identification of silicone species with detection limits below 0.5 μg of Si/mL are possible with this technique. The technique is compared with a silicone-specific technique, 29Si NMR, and a non-silicone-specific technique, ICP-AES. 29Si NMR was far less sensitive, with a detection limit of only 64 μg of Si/mL in serum when analyzing for one compound with a single sharp resonance. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) has potentially lower detection limits, but the technique is not silicone-specific and suffers from species-dependent responses.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac990157d