Loading…

Mechanical endothelial damage results in basic fibroblast growth factor–mediated activation of extracellular signal-regulated kinases

Background:  Endothelial damage, such as that associated with balloon angioplasty or preparation of veins for bypass grafts, results in intimal hyperplasia. Growth factors and cytokines that modulate endothelial cell functions through various intracellular signaling pathways mediate rapid endothelia...

Full description

Saved in:
Bibliographic Details
Published in:Surgery 1999-08, Vol.126 (2), p.422-427
Main Authors: Pintucci, Giuseppe, Steinberg, Bryan M., Seghezzi, Graziano, Yun, Jaime, Apazidis, Alexios, Baumann, F.Gregory, Grossi, Eugene A., Colvin, Stephen B., Mignatti, Paolo, Galloway, Aubrey C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background:  Endothelial damage, such as that associated with balloon angioplasty or preparation of veins for bypass grafts, results in intimal hyperplasia. Growth factors and cytokines that modulate endothelial cell functions through various intracellular signaling pathways mediate rapid endothelial repair, which may prevent or reduce restenosis. Here we investigated the effect of mechanical injury of endothelial cells on the mitogen-activated kinase signaling pathways, extracellular-signal–regulated kinases (ERKs), C-Jun N-terminal kinase (JNK/SAPK), and p38. Methods:  Confluent human umbilical vein endothelial cells or bovine aortic endothelial cells were wounded with a razor blade; mitogen-activated kinase activation was monitored by immunoblotting with antibodies to active ERK, JNK/SAPK, or p38. Results:  Wounding of human umbilical vein endothelial cell or bovine aortic endothelial cell monolayers resulted in rapid (5-minute) activation of ERK-1 and –2, which was abolished by monoclonal antibody to basic fibroblast growth factor (FGF-2). This antibody or an inhibitor of ERK activation, PD98059, also blocked endothelial cell migration after the wounding. Thus FGF-2–induced ERK activation mediates the endothelial response to wounding. Conclusions:  ERK-1 and -2 are activated by FGF-2 released from endothelial cells in response to injury. Therapeutic strategies aimed at reducing FGF-2–induced intimal hyperplasia should preserve ERK activation in endothelial cells while abolishing it in smooth muscle cells. (Surgery 1999:126:422-7.)
ISSN:0039-6060
1532-7361
DOI:10.1016/S0039-6060(99)70187-X