Loading…

Monoaminergic–cholinergic interactions in the primate basal forebrain

Anatomical studies in the rat have shown that the cholinergic cells of the nucleus basalis receive synapses from monoamine axons, but similar evidence is lacking in primates. We used single- and double-labeling immunocytochemistry to visualize monoamine axons and their relationship with the choliner...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience 1999-01, Vol.93 (3), p.817-829
Main Authors: Smiley, J.F., Subramanian, M., Mesulam, M.-M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c516t-bf699c566172e171750c9a9ac70c354fc7bd302d24d119f10703a33b273de7533
cites cdi_FETCH-LOGICAL-c516t-bf699c566172e171750c9a9ac70c354fc7bd302d24d119f10703a33b273de7533
container_end_page 829
container_issue 3
container_start_page 817
container_title Neuroscience
container_volume 93
creator Smiley, J.F.
Subramanian, M.
Mesulam, M.-M.
description Anatomical studies in the rat have shown that the cholinergic cells of the nucleus basalis receive synapses from monoamine axons, but similar evidence is lacking in primates. We used single- and double-labeling immunocytochemistry to visualize monoamine axons and their relationship with the cholinergic cells of the basal forebrain of the monkey. Norepinephrine axons, labeled with dopamine-β-hydroxylase antibodies, formed a bed of fine varicose axons that co-distributed with the cholinergic cells. Tyrosine hydroxylase-immunoreactive axons, presumed to be mainly dopaminergic, were 10–20 times more abundant than dopamine-β-hydroxylase axons throughout the basal forebrain, except in the medial septal area, where their density was lower. Serotonin-immunoreactive axons formed a dense axon plexus throughout the basal forebrain. Double-labeling light microscopy demonstrated that each of the three types of monoamine axons formed frequent direct contacts with the cholinergic cells. Electron microscopy showed that the noradrenergic and the putative dopaminergic axons synapsed on the cholinergic cells. In the human brain, immunolabeling with antibodies to dopamine-β-hydroxylase, tyrosine hydroxylase and tryptophan hydroxylase (for serotonin axons) showed axon densities in the nucleus basalis comparable to those of the monkey brain. The data demonstrate that all three of these monoamine systems innervate the cholinergic and possibly also the non-cholinergic cells of the nucleus basalis, and therefore affect the release of acetylcholine in the cerebral cortex.
doi_str_mv 10.1016/S0306-4522(99)00116-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70005297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306452299001165</els_id><sourcerecordid>18170705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-bf699c566172e171750c9a9ac70c354fc7bd302d24d119f10703a33b273de7533</originalsourceid><addsrcrecordid>eNqFkMlKBDEQQIMozjj6CUofRPTQmsrSmZxExA0UD-o5pNPVGunpaNIjePMf_EO_xJ4F9WZdioJX2yNkG-ghUCiO7iinRS4kY_taH1AKUORyhQxhrHiupBCrZPiDDMhGSs-0Dyn4OhkAFYozMR6Si5vQBjvxLcZH774-Pt1TaJZV5tsOo3WdD23qi6x7wuwl-ontMCttsk1Wh4hltL7dJGu1bRJuLfOIPJyf3Z9e5te3F1enJ9e5k1B0eVkXWjtZFKAYggIlqdNWW6eo41LUTpUVp6xiogLQNVBFueW8ZIpXqCTnI7K3mPsSw-sUU2cmPjlsGttimCajZj8yrf4FYQyqny57UC5AF0NKEWszfzG-G6BmptrMVZuZR6O1mas2s76d5YJpOcHqT9fCbQ_sLgGbnG3qaFvn0y-nuWSi6LHjBYa9tjeP0STnsXVY-YiuM1Xw_1zyDdeQmpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18170705</pqid></control><display><type>article</type><title>Monoaminergic–cholinergic interactions in the primate basal forebrain</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Smiley, J.F. ; Subramanian, M. ; Mesulam, M.-M.</creator><creatorcontrib>Smiley, J.F. ; Subramanian, M. ; Mesulam, M.-M.</creatorcontrib><description>Anatomical studies in the rat have shown that the cholinergic cells of the nucleus basalis receive synapses from monoamine axons, but similar evidence is lacking in primates. We used single- and double-labeling immunocytochemistry to visualize monoamine axons and their relationship with the cholinergic cells of the basal forebrain of the monkey. Norepinephrine axons, labeled with dopamine-β-hydroxylase antibodies, formed a bed of fine varicose axons that co-distributed with the cholinergic cells. Tyrosine hydroxylase-immunoreactive axons, presumed to be mainly dopaminergic, were 10–20 times more abundant than dopamine-β-hydroxylase axons throughout the basal forebrain, except in the medial septal area, where their density was lower. Serotonin-immunoreactive axons formed a dense axon plexus throughout the basal forebrain. Double-labeling light microscopy demonstrated that each of the three types of monoamine axons formed frequent direct contacts with the cholinergic cells. Electron microscopy showed that the noradrenergic and the putative dopaminergic axons synapsed on the cholinergic cells. In the human brain, immunolabeling with antibodies to dopamine-β-hydroxylase, tyrosine hydroxylase and tryptophan hydroxylase (for serotonin axons) showed axon densities in the nucleus basalis comparable to those of the monkey brain. The data demonstrate that all three of these monoamine systems innervate the cholinergic and possibly also the non-cholinergic cells of the nucleus basalis, and therefore affect the release of acetylcholine in the cerebral cortex.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/S0306-4522(99)00116-5</identifier><identifier>PMID: 10473248</identifier><identifier>CODEN: NRSCDN</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>acetylcholine ; Alzheimer's disease ; Animals ; Axons - metabolism ; Axons - ultrastructure ; Biological and medical sciences ; Brain Stem - cytology ; Central nervous system ; Central neurotransmission. Neuromudulation. Pathways and receptors ; Choline O-Acetyltransferase - metabolism ; Cholinergic Fibers - metabolism ; Cholinergic Fibers - ultrastructure ; dopamine ; Dopamine - metabolism ; Dopamine beta-Hydroxylase - metabolism ; Fundamental and applied biological sciences. Psychology ; Immunoenzyme Techniques ; Macaca fascicularis ; Macaca nemestrina ; Microscopy, Electron ; monoamines ; Nerve Tissue Proteins - metabolism ; Neurons - metabolism ; Neurons - ultrastructure ; norepinephrine ; Norepinephrine - metabolism ; nucleus basalis ; Prosencephalon - metabolism ; serotonin ; Serotonin - metabolism ; Tyrosine 3-Monooxygenase - metabolism ; Vertebrates: nervous system and sense organs</subject><ispartof>Neuroscience, 1999-01, Vol.93 (3), p.817-829</ispartof><rights>1999 IBRO</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-bf699c566172e171750c9a9ac70c354fc7bd302d24d119f10703a33b273de7533</citedby><cites>FETCH-LOGICAL-c516t-bf699c566172e171750c9a9ac70c354fc7bd302d24d119f10703a33b273de7533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1935246$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10473248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smiley, J.F.</creatorcontrib><creatorcontrib>Subramanian, M.</creatorcontrib><creatorcontrib>Mesulam, M.-M.</creatorcontrib><title>Monoaminergic–cholinergic interactions in the primate basal forebrain</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>Anatomical studies in the rat have shown that the cholinergic cells of the nucleus basalis receive synapses from monoamine axons, but similar evidence is lacking in primates. We used single- and double-labeling immunocytochemistry to visualize monoamine axons and their relationship with the cholinergic cells of the basal forebrain of the monkey. Norepinephrine axons, labeled with dopamine-β-hydroxylase antibodies, formed a bed of fine varicose axons that co-distributed with the cholinergic cells. Tyrosine hydroxylase-immunoreactive axons, presumed to be mainly dopaminergic, were 10–20 times more abundant than dopamine-β-hydroxylase axons throughout the basal forebrain, except in the medial septal area, where their density was lower. Serotonin-immunoreactive axons formed a dense axon plexus throughout the basal forebrain. Double-labeling light microscopy demonstrated that each of the three types of monoamine axons formed frequent direct contacts with the cholinergic cells. Electron microscopy showed that the noradrenergic and the putative dopaminergic axons synapsed on the cholinergic cells. In the human brain, immunolabeling with antibodies to dopamine-β-hydroxylase, tyrosine hydroxylase and tryptophan hydroxylase (for serotonin axons) showed axon densities in the nucleus basalis comparable to those of the monkey brain. The data demonstrate that all three of these monoamine systems innervate the cholinergic and possibly also the non-cholinergic cells of the nucleus basalis, and therefore affect the release of acetylcholine in the cerebral cortex.</description><subject>acetylcholine</subject><subject>Alzheimer's disease</subject><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Axons - ultrastructure</subject><subject>Biological and medical sciences</subject><subject>Brain Stem - cytology</subject><subject>Central nervous system</subject><subject>Central neurotransmission. Neuromudulation. Pathways and receptors</subject><subject>Choline O-Acetyltransferase - metabolism</subject><subject>Cholinergic Fibers - metabolism</subject><subject>Cholinergic Fibers - ultrastructure</subject><subject>dopamine</subject><subject>Dopamine - metabolism</subject><subject>Dopamine beta-Hydroxylase - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Immunoenzyme Techniques</subject><subject>Macaca fascicularis</subject><subject>Macaca nemestrina</subject><subject>Microscopy, Electron</subject><subject>monoamines</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons - metabolism</subject><subject>Neurons - ultrastructure</subject><subject>norepinephrine</subject><subject>Norepinephrine - metabolism</subject><subject>nucleus basalis</subject><subject>Prosencephalon - metabolism</subject><subject>serotonin</subject><subject>Serotonin - metabolism</subject><subject>Tyrosine 3-Monooxygenase - metabolism</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkMlKBDEQQIMozjj6CUofRPTQmsrSmZxExA0UD-o5pNPVGunpaNIjePMf_EO_xJ4F9WZdioJX2yNkG-ghUCiO7iinRS4kY_taH1AKUORyhQxhrHiupBCrZPiDDMhGSs-0Dyn4OhkAFYozMR6Si5vQBjvxLcZH774-Pt1TaJZV5tsOo3WdD23qi6x7wuwl-ontMCttsk1Wh4hltL7dJGu1bRJuLfOIPJyf3Z9e5te3F1enJ9e5k1B0eVkXWjtZFKAYggIlqdNWW6eo41LUTpUVp6xiogLQNVBFueW8ZIpXqCTnI7K3mPsSw-sUU2cmPjlsGttimCajZj8yrf4FYQyqny57UC5AF0NKEWszfzG-G6BmptrMVZuZR6O1mas2s76d5YJpOcHqT9fCbQ_sLgGbnG3qaFvn0y-nuWSi6LHjBYa9tjeP0STnsXVY-YiuM1Xw_1zyDdeQmpg</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Smiley, J.F.</creator><creator>Subramanian, M.</creator><creator>Mesulam, M.-M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>19990101</creationdate><title>Monoaminergic–cholinergic interactions in the primate basal forebrain</title><author>Smiley, J.F. ; Subramanian, M. ; Mesulam, M.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-bf699c566172e171750c9a9ac70c354fc7bd302d24d119f10703a33b273de7533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>acetylcholine</topic><topic>Alzheimer's disease</topic><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Axons - ultrastructure</topic><topic>Biological and medical sciences</topic><topic>Brain Stem - cytology</topic><topic>Central nervous system</topic><topic>Central neurotransmission. Neuromudulation. Pathways and receptors</topic><topic>Choline O-Acetyltransferase - metabolism</topic><topic>Cholinergic Fibers - metabolism</topic><topic>Cholinergic Fibers - ultrastructure</topic><topic>dopamine</topic><topic>Dopamine - metabolism</topic><topic>Dopamine beta-Hydroxylase - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Immunoenzyme Techniques</topic><topic>Macaca fascicularis</topic><topic>Macaca nemestrina</topic><topic>Microscopy, Electron</topic><topic>monoamines</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons - metabolism</topic><topic>Neurons - ultrastructure</topic><topic>norepinephrine</topic><topic>Norepinephrine - metabolism</topic><topic>nucleus basalis</topic><topic>Prosencephalon - metabolism</topic><topic>serotonin</topic><topic>Serotonin - metabolism</topic><topic>Tyrosine 3-Monooxygenase - metabolism</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smiley, J.F.</creatorcontrib><creatorcontrib>Subramanian, M.</creatorcontrib><creatorcontrib>Mesulam, M.-M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smiley, J.F.</au><au>Subramanian, M.</au><au>Mesulam, M.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monoaminergic–cholinergic interactions in the primate basal forebrain</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>1999-01-01</date><risdate>1999</risdate><volume>93</volume><issue>3</issue><spage>817</spage><epage>829</epage><pages>817-829</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><coden>NRSCDN</coden><abstract>Anatomical studies in the rat have shown that the cholinergic cells of the nucleus basalis receive synapses from monoamine axons, but similar evidence is lacking in primates. We used single- and double-labeling immunocytochemistry to visualize monoamine axons and their relationship with the cholinergic cells of the basal forebrain of the monkey. Norepinephrine axons, labeled with dopamine-β-hydroxylase antibodies, formed a bed of fine varicose axons that co-distributed with the cholinergic cells. Tyrosine hydroxylase-immunoreactive axons, presumed to be mainly dopaminergic, were 10–20 times more abundant than dopamine-β-hydroxylase axons throughout the basal forebrain, except in the medial septal area, where their density was lower. Serotonin-immunoreactive axons formed a dense axon plexus throughout the basal forebrain. Double-labeling light microscopy demonstrated that each of the three types of monoamine axons formed frequent direct contacts with the cholinergic cells. Electron microscopy showed that the noradrenergic and the putative dopaminergic axons synapsed on the cholinergic cells. In the human brain, immunolabeling with antibodies to dopamine-β-hydroxylase, tyrosine hydroxylase and tryptophan hydroxylase (for serotonin axons) showed axon densities in the nucleus basalis comparable to those of the monkey brain. The data demonstrate that all three of these monoamine systems innervate the cholinergic and possibly also the non-cholinergic cells of the nucleus basalis, and therefore affect the release of acetylcholine in the cerebral cortex.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>10473248</pmid><doi>10.1016/S0306-4522(99)00116-5</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-4522
ispartof Neuroscience, 1999-01, Vol.93 (3), p.817-829
issn 0306-4522
1873-7544
language eng
recordid cdi_proquest_miscellaneous_70005297
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects acetylcholine
Alzheimer's disease
Animals
Axons - metabolism
Axons - ultrastructure
Biological and medical sciences
Brain Stem - cytology
Central nervous system
Central neurotransmission. Neuromudulation. Pathways and receptors
Choline O-Acetyltransferase - metabolism
Cholinergic Fibers - metabolism
Cholinergic Fibers - ultrastructure
dopamine
Dopamine - metabolism
Dopamine beta-Hydroxylase - metabolism
Fundamental and applied biological sciences. Psychology
Immunoenzyme Techniques
Macaca fascicularis
Macaca nemestrina
Microscopy, Electron
monoamines
Nerve Tissue Proteins - metabolism
Neurons - metabolism
Neurons - ultrastructure
norepinephrine
Norepinephrine - metabolism
nucleus basalis
Prosencephalon - metabolism
serotonin
Serotonin - metabolism
Tyrosine 3-Monooxygenase - metabolism
Vertebrates: nervous system and sense organs
title Monoaminergic–cholinergic interactions in the primate basal forebrain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monoaminergic%E2%80%93cholinergic%20interactions%20in%20the%20primate%20basal%20forebrain&rft.jtitle=Neuroscience&rft.au=Smiley,%20J.F.&rft.date=1999-01-01&rft.volume=93&rft.issue=3&rft.spage=817&rft.epage=829&rft.pages=817-829&rft.issn=0306-4522&rft.eissn=1873-7544&rft.coden=NRSCDN&rft_id=info:doi/10.1016/S0306-4522(99)00116-5&rft_dat=%3Cproquest_cross%3E18170705%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c516t-bf699c566172e171750c9a9ac70c354fc7bd302d24d119f10703a33b273de7533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18170705&rft_id=info:pmid/10473248&rfr_iscdi=true