Loading…
Genetic comparison of Bacillus anthracis and its close relatives using amplified fragment length polymorphism and polymerase chain reaction analysis
Amplified fragment length polymorphism (AFLP) analysis allows a rapid, relatively simple analysis of a large portion of a microbial genome, providing information about the species and its phylogenetic relationship to other microbes ( Vos et al. 1995 ). The method simply surveys the genome for length...
Saved in:
Published in: | Journal of applied microbiology 1999-08, Vol.87 (2), p.263-269 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Amplified fragment length polymorphism (AFLP) analysis allows a rapid, relatively simple analysis of a large portion of a microbial genome, providing information about the species and its phylogenetic relationship to other microbes ( Vos et al. 1995
). The method simply surveys the genome for length and sequence polymorphisms. The AFLP pattern identified can be used for comparison to the genomes of other species. Unlike other methods, it does not rely on analysis of a single genetic locus that may bias the interpretation of results and does not require any prior knowledge of the targeted organism. Moreover, a standard set of reagents can be applied to any species without using species‐specific information or molecular probes. We are using AFLP analysis to rapidly identify different bacterial species. A comparison of AFLP profiles generated from a large battery of Bacillus anthracis strains shows very little variability among different isolates (
Keim et al. 1997
). By contrast, there is a significant difference between AFLP profiles generated for any B. anthracis strain and even the most closely related Bacillus species. Sufficient variability is apparent among all known microbial species to allow phylogenetic analysis based on large numbers of genetically unlinked loci. These striking differences among AFLP profiles allow unambiguous identification of previously identified species and phylogenetic placement of newly characterized isolates relative to known species based on a large number of independent genetic loci. Data generated thus far show that the method provides phylogenetic analyses that are consistent with other widely accepted phylogenetic methods. However, AFLP analysis provides a more detailed analysis of the targets and samples a much larger portion of the genome. Consequently, it provides an inexpensive, rapid means of characterizing microbial isolates to further differentiate among strains and closely related microbial species. Such information cannot be rapidly generated by other means.
AFLP sample analysis quickly generates a very large amount of molecular information about microbial genomes. However, this information cannot be analysed rapidly using manual methods. We are developing a large archive of electronic AFLP signatures that is being used to identify isolates collected from medical, veterinary, forensic and environmental samples. We are also developing the computational packages necessary to rapidly and unambiguously analyse the |
---|---|
ISSN: | 1364-5072 1365-2672 |
DOI: | 10.1046/j.1365-2672.1999.00884.x |