Loading…
Combining Partial liquid ventilation and prone position in experimental acute lung injury
Partial liquid ventilation (PLV) and prone position can improve arterial oxygen tension (PaO2) in acute lung injury (ALI). The authors evaluated additive effects of these techniques in a saline lung lavage model of ALI. ALI was induced in 20 medium-sized pigs (29.2+/-2.5 kg body weight). Gas exchang...
Saved in:
Published in: | Anesthesiology (Philadelphia) 1999-09, Vol.91 (3), p.796-803 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Partial liquid ventilation (PLV) and prone position can improve arterial oxygen tension (PaO2) in acute lung injury (ALI). The authors evaluated additive effects of these techniques in a saline lung lavage model of ALI.
ALI was induced in 20 medium-sized pigs (29.2+/-2.5 kg body weight). Gas exchange and hemodynamic parameters were determined in both supine and prone position in all animals. Thereafter, one group was assigned to PLV with two sequential doses of 15 ml/kg of perfluorocarbon (n = 10); the second group was assigned to gaseous ventilation (n = 10). Gas-exchange and hemodynamic parameters were determined at corresponding time points in both groups in prone and supine position.
In the PLV group, positioning the animals prone resulted in an increase of PaO2 prior to PLV and during PLV with both doses of perfluorocarbon when compared to ALI. PLV in supine position was only effective if 30 ml/kg of perfluorocarbon was applied. In the gaseous ventilation group, PaO2 increased reproducibly compared with ALI when the animals were turned prone. A significant additive improvement of arterial oxygenation was observed during combined therapy with 30 ml/kg of perfluorocarbon and prone position in the PLV group compared with either therapy alone.
The authors conclude that combining PLV with prone position exerts additive effects on pulmonary gas exchange in a saline lung lavage model of ALI in medium-sized pigs. |
---|---|
ISSN: | 0003-3022 1528-1175 |
DOI: | 10.1097/00000542-199909000-00032 |