Loading…

A distributed cortical network for auditory sensory memory in humans

Auditory sensory memory is a critical first stage in auditory perception that permits listeners to integrate incoming acoustic information with stored representations of preceding auditory events. Here, we investigated the neural circuits of sensory memory using behavioral and electrophysiological m...

Full description

Saved in:
Bibliographic Details
Published in:Brain research 1998-11, Vol.812 (1), p.23-37
Main Authors: Alain, Claude, Woods, David L., Knight, Robert T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Auditory sensory memory is a critical first stage in auditory perception that permits listeners to integrate incoming acoustic information with stored representations of preceding auditory events. Here, we investigated the neural circuits of sensory memory using behavioral and electrophysiological measures of auditory processing in patients with unilateral brain damage to dorsolateral prefrontal cortex, posterior association cortex, or the hippocampus. We used a neurophysiological marker of an automatic component of sensory memory, the mismatch negativity (MMN), which can be recorded without overt attention. In comparison with control subjects, temporal-parietal patients had impaired auditory discrimination and reduced MMN amplitudes with both effects evident only following stimuli presented in the ear contralateral to the lesioned hemisphere. This suggests that auditory sensory memories are predominantly stored in auditory cortex contralateral to the ear of presentation. Dorsolateral prefrontal damage impaired performance and reduced MMNs elicited by deviant stimuli presented in either ear, implying that dorsolateral prefrontal cortices have a bilateral facilitatory effect on sensory memory storage. Hippocampal lesions did not affect either performance or electrophysiological measures. The results provide evidence of a temporal-prefrontal neocortical network critical for the transient storage of auditory stimuli.
ISSN:0006-8993
1872-6240
DOI:10.1016/S0006-8993(98)00851-8