Loading…
Adaptation and the temporal delay filter of fly motion detectors
Recent accounts attribute motion adaptation to a shortening of the delay filter in elementary motion detectors (EMDs). Using computer modelling and recordings from HS neurons in the drone-fly Eristalis tenax, we present evidence that challenges this theory. (i) Previous evidence for a change in the...
Saved in:
Published in: | Vision research (Oxford) 1999-08, Vol.39 (16), p.2603-2613 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c442t-929a3ca3d6e7bd9285743d8382473073557c46c51feb041f3e579e21f73dab6e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c442t-929a3ca3d6e7bd9285743d8382473073557c46c51feb041f3e579e21f73dab6e3 |
container_end_page | 2613 |
container_issue | 16 |
container_start_page | 2603 |
container_title | Vision research (Oxford) |
container_volume | 39 |
creator | Harris, Robert A. O’Carroll, David C. Laughlin, Simon B. |
description | Recent accounts attribute motion adaptation to a shortening of the delay filter in elementary motion detectors (EMDs). Using computer modelling and recordings from HS neurons in the drone-fly
Eristalis tenax, we present evidence that challenges this theory. (i) Previous evidence for a change in the delay filter comes from ‘image step’ (or ‘velocity impulse’) experiments. We note a large discrepancy between the temporal frequency tuning predicted from these experiments and the observed tuning of motion sensitive cells. (ii) The results of image step experiments are highly sensitive to the experimental method used. (iii) An apparent motion stimulus reveals a much shorter EMD delay than suggested by previous ‘image step’ experiments. This short delay agrees with the observed temporal frequency sensitivity of the unadapted cell. (iv) A key prediction of a shortening delay filter is that the temporal frequency optimum of the cell should show a large shift to higher temporal frequencies after motion adaptation. We show little change in the temporal or spatial frequency (and hence velocity) optima following adaptation. |
doi_str_mv | 10.1016/S0042-6989(98)00297-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70050464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0042698998002971</els_id><sourcerecordid>70050464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-929a3ca3d6e7bd9285743d8382473073557c46c51feb041f3e579e21f73dab6e3</originalsourceid><addsrcrecordid>eNqF0MtOAyEUgGFiNLZeHkEzC2N0MQoDDMNKm8ZbYuJCXRMKh4iZGSpQk769Y9uoO1dsvsM5-RE6IviCYFJfPmPMqrKWjTyTzTnGlRQl2UJj0oim5DWrt9H4h4zQXkrvGGPBK7mLRgQzWTUVG6PridXzrLMPfaF7W-Q3KDJ08xB1W1ho9bJwvs0Qi-AK1y6LLqyshQwmh5gO0I7TbYLDzbuPXm9vXqb35ePT3cN08lgaxqpcykpqajS1NYiZHZZzwaht6HCEoFhQzoVhteHEwQwz4ihwIaEiTlCrZzXQfXS6_ncew8cCUladTwbaVvcQFkkJjDlmNRsgX0MTQ0oRnJpH3-m4VASr73RqlU59d1GyUat0igxzx5sFi1kH9s_UutUATjZAJ6NbF3VvfPp1oqFc8IFdrRkMNT49RJWMh96A9XFIpmzw_1zyBeReia0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70050464</pqid></control><display><type>article</type><title>Adaptation and the temporal delay filter of fly motion detectors</title><source>ScienceDirect Freedom Collection</source><creator>Harris, Robert A. ; O’Carroll, David C. ; Laughlin, Simon B.</creator><creatorcontrib>Harris, Robert A. ; O’Carroll, David C. ; Laughlin, Simon B.</creatorcontrib><description>Recent accounts attribute motion adaptation to a shortening of the delay filter in elementary motion detectors (EMDs). Using computer modelling and recordings from HS neurons in the drone-fly
Eristalis tenax, we present evidence that challenges this theory. (i) Previous evidence for a change in the delay filter comes from ‘image step’ (or ‘velocity impulse’) experiments. We note a large discrepancy between the temporal frequency tuning predicted from these experiments and the observed tuning of motion sensitive cells. (ii) The results of image step experiments are highly sensitive to the experimental method used. (iii) An apparent motion stimulus reveals a much shorter EMD delay than suggested by previous ‘image step’ experiments. This short delay agrees with the observed temporal frequency sensitivity of the unadapted cell. (iv) A key prediction of a shortening delay filter is that the temporal frequency optimum of the cell should show a large shift to higher temporal frequencies after motion adaptation. We show little change in the temporal or spatial frequency (and hence velocity) optima following adaptation.</description><identifier>ISSN: 0042-6989</identifier><identifier>EISSN: 1878-5646</identifier><identifier>DOI: 10.1016/S0042-6989(98)00297-1</identifier><identifier>PMID: 10492824</identifier><identifier>CODEN: VISRAM</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adaptation, Ocular - physiology ; Animals ; Biochemistry. Physiology. Immunology ; Biological and medical sciences ; Contrast Sensitivity - physiology ; Delay filter ; Diptera - physiology ; Fundamental and applied biological sciences. Psychology ; Insect ; Insecta ; Invertebrates ; Models, Neurological ; Motion adaptation ; Motion Perception - physiology ; Neurons - physiology ; Pattern Recognition, Visual - physiology ; Physiology. Development ; Reichardt correlator ; Space life sciences ; Spatio-temporal ; Time Factors</subject><ispartof>Vision research (Oxford), 1999-08, Vol.39 (16), p.2603-2613</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-929a3ca3d6e7bd9285743d8382473073557c46c51feb041f3e579e21f73dab6e3</citedby><cites>FETCH-LOGICAL-c442t-929a3ca3d6e7bd9285743d8382473073557c46c51feb041f3e579e21f73dab6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1783575$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10492824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harris, Robert A.</creatorcontrib><creatorcontrib>O’Carroll, David C.</creatorcontrib><creatorcontrib>Laughlin, Simon B.</creatorcontrib><title>Adaptation and the temporal delay filter of fly motion detectors</title><title>Vision research (Oxford)</title><addtitle>Vision Res</addtitle><description>Recent accounts attribute motion adaptation to a shortening of the delay filter in elementary motion detectors (EMDs). Using computer modelling and recordings from HS neurons in the drone-fly
Eristalis tenax, we present evidence that challenges this theory. (i) Previous evidence for a change in the delay filter comes from ‘image step’ (or ‘velocity impulse’) experiments. We note a large discrepancy between the temporal frequency tuning predicted from these experiments and the observed tuning of motion sensitive cells. (ii) The results of image step experiments are highly sensitive to the experimental method used. (iii) An apparent motion stimulus reveals a much shorter EMD delay than suggested by previous ‘image step’ experiments. This short delay agrees with the observed temporal frequency sensitivity of the unadapted cell. (iv) A key prediction of a shortening delay filter is that the temporal frequency optimum of the cell should show a large shift to higher temporal frequencies after motion adaptation. We show little change in the temporal or spatial frequency (and hence velocity) optima following adaptation.</description><subject>Adaptation, Ocular - physiology</subject><subject>Animals</subject><subject>Biochemistry. Physiology. Immunology</subject><subject>Biological and medical sciences</subject><subject>Contrast Sensitivity - physiology</subject><subject>Delay filter</subject><subject>Diptera - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Insect</subject><subject>Insecta</subject><subject>Invertebrates</subject><subject>Models, Neurological</subject><subject>Motion adaptation</subject><subject>Motion Perception - physiology</subject><subject>Neurons - physiology</subject><subject>Pattern Recognition, Visual - physiology</subject><subject>Physiology. Development</subject><subject>Reichardt correlator</subject><subject>Space life sciences</subject><subject>Spatio-temporal</subject><subject>Time Factors</subject><issn>0042-6989</issn><issn>1878-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqF0MtOAyEUgGFiNLZeHkEzC2N0MQoDDMNKm8ZbYuJCXRMKh4iZGSpQk769Y9uoO1dsvsM5-RE6IviCYFJfPmPMqrKWjTyTzTnGlRQl2UJj0oim5DWrt9H4h4zQXkrvGGPBK7mLRgQzWTUVG6PridXzrLMPfaF7W-Q3KDJ08xB1W1ho9bJwvs0Qi-AK1y6LLqyshQwmh5gO0I7TbYLDzbuPXm9vXqb35ePT3cN08lgaxqpcykpqajS1NYiZHZZzwaht6HCEoFhQzoVhteHEwQwz4ihwIaEiTlCrZzXQfXS6_ncew8cCUladTwbaVvcQFkkJjDlmNRsgX0MTQ0oRnJpH3-m4VASr73RqlU59d1GyUat0igxzx5sFi1kH9s_UutUATjZAJ6NbF3VvfPp1oqFc8IFdrRkMNT49RJWMh96A9XFIpmzw_1zyBeReia0</recordid><startdate>19990801</startdate><enddate>19990801</enddate><creator>Harris, Robert A.</creator><creator>O’Carroll, David C.</creator><creator>Laughlin, Simon B.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19990801</creationdate><title>Adaptation and the temporal delay filter of fly motion detectors</title><author>Harris, Robert A. ; O’Carroll, David C. ; Laughlin, Simon B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-929a3ca3d6e7bd9285743d8382473073557c46c51feb041f3e579e21f73dab6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adaptation, Ocular - physiology</topic><topic>Animals</topic><topic>Biochemistry. Physiology. Immunology</topic><topic>Biological and medical sciences</topic><topic>Contrast Sensitivity - physiology</topic><topic>Delay filter</topic><topic>Diptera - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Insect</topic><topic>Insecta</topic><topic>Invertebrates</topic><topic>Models, Neurological</topic><topic>Motion adaptation</topic><topic>Motion Perception - physiology</topic><topic>Neurons - physiology</topic><topic>Pattern Recognition, Visual - physiology</topic><topic>Physiology. Development</topic><topic>Reichardt correlator</topic><topic>Space life sciences</topic><topic>Spatio-temporal</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harris, Robert A.</creatorcontrib><creatorcontrib>O’Carroll, David C.</creatorcontrib><creatorcontrib>Laughlin, Simon B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Vision research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harris, Robert A.</au><au>O’Carroll, David C.</au><au>Laughlin, Simon B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptation and the temporal delay filter of fly motion detectors</atitle><jtitle>Vision research (Oxford)</jtitle><addtitle>Vision Res</addtitle><date>1999-08-01</date><risdate>1999</risdate><volume>39</volume><issue>16</issue><spage>2603</spage><epage>2613</epage><pages>2603-2613</pages><issn>0042-6989</issn><eissn>1878-5646</eissn><coden>VISRAM</coden><abstract>Recent accounts attribute motion adaptation to a shortening of the delay filter in elementary motion detectors (EMDs). Using computer modelling and recordings from HS neurons in the drone-fly
Eristalis tenax, we present evidence that challenges this theory. (i) Previous evidence for a change in the delay filter comes from ‘image step’ (or ‘velocity impulse’) experiments. We note a large discrepancy between the temporal frequency tuning predicted from these experiments and the observed tuning of motion sensitive cells. (ii) The results of image step experiments are highly sensitive to the experimental method used. (iii) An apparent motion stimulus reveals a much shorter EMD delay than suggested by previous ‘image step’ experiments. This short delay agrees with the observed temporal frequency sensitivity of the unadapted cell. (iv) A key prediction of a shortening delay filter is that the temporal frequency optimum of the cell should show a large shift to higher temporal frequencies after motion adaptation. We show little change in the temporal or spatial frequency (and hence velocity) optima following adaptation.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>10492824</pmid><doi>10.1016/S0042-6989(98)00297-1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0042-6989 |
ispartof | Vision research (Oxford), 1999-08, Vol.39 (16), p.2603-2613 |
issn | 0042-6989 1878-5646 |
language | eng |
recordid | cdi_proquest_miscellaneous_70050464 |
source | ScienceDirect Freedom Collection |
subjects | Adaptation, Ocular - physiology Animals Biochemistry. Physiology. Immunology Biological and medical sciences Contrast Sensitivity - physiology Delay filter Diptera - physiology Fundamental and applied biological sciences. Psychology Insect Insecta Invertebrates Models, Neurological Motion adaptation Motion Perception - physiology Neurons - physiology Pattern Recognition, Visual - physiology Physiology. Development Reichardt correlator Space life sciences Spatio-temporal Time Factors |
title | Adaptation and the temporal delay filter of fly motion detectors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptation%20and%20the%20temporal%20delay%20filter%20of%20fly%20motion%20detectors&rft.jtitle=Vision%20research%20(Oxford)&rft.au=Harris,%20Robert%20A.&rft.date=1999-08-01&rft.volume=39&rft.issue=16&rft.spage=2603&rft.epage=2613&rft.pages=2603-2613&rft.issn=0042-6989&rft.eissn=1878-5646&rft.coden=VISRAM&rft_id=info:doi/10.1016/S0042-6989(98)00297-1&rft_dat=%3Cproquest_cross%3E70050464%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-929a3ca3d6e7bd9285743d8382473073557c46c51feb041f3e579e21f73dab6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70050464&rft_id=info:pmid/10492824&rfr_iscdi=true |