Loading…

Adaptation and the temporal delay filter of fly motion detectors

Recent accounts attribute motion adaptation to a shortening of the delay filter in elementary motion detectors (EMDs). Using computer modelling and recordings from HS neurons in the drone-fly Eristalis tenax, we present evidence that challenges this theory. (i) Previous evidence for a change in the...

Full description

Saved in:
Bibliographic Details
Published in:Vision research (Oxford) 1999-08, Vol.39 (16), p.2603-2613
Main Authors: Harris, Robert A., O’Carroll, David C., Laughlin, Simon B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-929a3ca3d6e7bd9285743d8382473073557c46c51feb041f3e579e21f73dab6e3
cites cdi_FETCH-LOGICAL-c442t-929a3ca3d6e7bd9285743d8382473073557c46c51feb041f3e579e21f73dab6e3
container_end_page 2613
container_issue 16
container_start_page 2603
container_title Vision research (Oxford)
container_volume 39
creator Harris, Robert A.
O’Carroll, David C.
Laughlin, Simon B.
description Recent accounts attribute motion adaptation to a shortening of the delay filter in elementary motion detectors (EMDs). Using computer modelling and recordings from HS neurons in the drone-fly Eristalis tenax, we present evidence that challenges this theory. (i) Previous evidence for a change in the delay filter comes from ‘image step’ (or ‘velocity impulse’) experiments. We note a large discrepancy between the temporal frequency tuning predicted from these experiments and the observed tuning of motion sensitive cells. (ii) The results of image step experiments are highly sensitive to the experimental method used. (iii) An apparent motion stimulus reveals a much shorter EMD delay than suggested by previous ‘image step’ experiments. This short delay agrees with the observed temporal frequency sensitivity of the unadapted cell. (iv) A key prediction of a shortening delay filter is that the temporal frequency optimum of the cell should show a large shift to higher temporal frequencies after motion adaptation. We show little change in the temporal or spatial frequency (and hence velocity) optima following adaptation.
doi_str_mv 10.1016/S0042-6989(98)00297-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70050464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0042698998002971</els_id><sourcerecordid>70050464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-929a3ca3d6e7bd9285743d8382473073557c46c51feb041f3e579e21f73dab6e3</originalsourceid><addsrcrecordid>eNqF0MtOAyEUgGFiNLZeHkEzC2N0MQoDDMNKm8ZbYuJCXRMKh4iZGSpQk769Y9uoO1dsvsM5-RE6IviCYFJfPmPMqrKWjTyTzTnGlRQl2UJj0oim5DWrt9H4h4zQXkrvGGPBK7mLRgQzWTUVG6PridXzrLMPfaF7W-Q3KDJ08xB1W1ho9bJwvs0Qi-AK1y6LLqyshQwmh5gO0I7TbYLDzbuPXm9vXqb35ePT3cN08lgaxqpcykpqajS1NYiZHZZzwaht6HCEoFhQzoVhteHEwQwz4ihwIaEiTlCrZzXQfXS6_ncew8cCUladTwbaVvcQFkkJjDlmNRsgX0MTQ0oRnJpH3-m4VASr73RqlU59d1GyUat0igxzx5sFi1kH9s_UutUATjZAJ6NbF3VvfPp1oqFc8IFdrRkMNT49RJWMh96A9XFIpmzw_1zyBeReia0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70050464</pqid></control><display><type>article</type><title>Adaptation and the temporal delay filter of fly motion detectors</title><source>ScienceDirect Freedom Collection</source><creator>Harris, Robert A. ; O’Carroll, David C. ; Laughlin, Simon B.</creator><creatorcontrib>Harris, Robert A. ; O’Carroll, David C. ; Laughlin, Simon B.</creatorcontrib><description>Recent accounts attribute motion adaptation to a shortening of the delay filter in elementary motion detectors (EMDs). Using computer modelling and recordings from HS neurons in the drone-fly Eristalis tenax, we present evidence that challenges this theory. (i) Previous evidence for a change in the delay filter comes from ‘image step’ (or ‘velocity impulse’) experiments. We note a large discrepancy between the temporal frequency tuning predicted from these experiments and the observed tuning of motion sensitive cells. (ii) The results of image step experiments are highly sensitive to the experimental method used. (iii) An apparent motion stimulus reveals a much shorter EMD delay than suggested by previous ‘image step’ experiments. This short delay agrees with the observed temporal frequency sensitivity of the unadapted cell. (iv) A key prediction of a shortening delay filter is that the temporal frequency optimum of the cell should show a large shift to higher temporal frequencies after motion adaptation. We show little change in the temporal or spatial frequency (and hence velocity) optima following adaptation.</description><identifier>ISSN: 0042-6989</identifier><identifier>EISSN: 1878-5646</identifier><identifier>DOI: 10.1016/S0042-6989(98)00297-1</identifier><identifier>PMID: 10492824</identifier><identifier>CODEN: VISRAM</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adaptation, Ocular - physiology ; Animals ; Biochemistry. Physiology. Immunology ; Biological and medical sciences ; Contrast Sensitivity - physiology ; Delay filter ; Diptera - physiology ; Fundamental and applied biological sciences. Psychology ; Insect ; Insecta ; Invertebrates ; Models, Neurological ; Motion adaptation ; Motion Perception - physiology ; Neurons - physiology ; Pattern Recognition, Visual - physiology ; Physiology. Development ; Reichardt correlator ; Space life sciences ; Spatio-temporal ; Time Factors</subject><ispartof>Vision research (Oxford), 1999-08, Vol.39 (16), p.2603-2613</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-929a3ca3d6e7bd9285743d8382473073557c46c51feb041f3e579e21f73dab6e3</citedby><cites>FETCH-LOGICAL-c442t-929a3ca3d6e7bd9285743d8382473073557c46c51feb041f3e579e21f73dab6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1783575$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10492824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harris, Robert A.</creatorcontrib><creatorcontrib>O’Carroll, David C.</creatorcontrib><creatorcontrib>Laughlin, Simon B.</creatorcontrib><title>Adaptation and the temporal delay filter of fly motion detectors</title><title>Vision research (Oxford)</title><addtitle>Vision Res</addtitle><description>Recent accounts attribute motion adaptation to a shortening of the delay filter in elementary motion detectors (EMDs). Using computer modelling and recordings from HS neurons in the drone-fly Eristalis tenax, we present evidence that challenges this theory. (i) Previous evidence for a change in the delay filter comes from ‘image step’ (or ‘velocity impulse’) experiments. We note a large discrepancy between the temporal frequency tuning predicted from these experiments and the observed tuning of motion sensitive cells. (ii) The results of image step experiments are highly sensitive to the experimental method used. (iii) An apparent motion stimulus reveals a much shorter EMD delay than suggested by previous ‘image step’ experiments. This short delay agrees with the observed temporal frequency sensitivity of the unadapted cell. (iv) A key prediction of a shortening delay filter is that the temporal frequency optimum of the cell should show a large shift to higher temporal frequencies after motion adaptation. We show little change in the temporal or spatial frequency (and hence velocity) optima following adaptation.</description><subject>Adaptation, Ocular - physiology</subject><subject>Animals</subject><subject>Biochemistry. Physiology. Immunology</subject><subject>Biological and medical sciences</subject><subject>Contrast Sensitivity - physiology</subject><subject>Delay filter</subject><subject>Diptera - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Insect</subject><subject>Insecta</subject><subject>Invertebrates</subject><subject>Models, Neurological</subject><subject>Motion adaptation</subject><subject>Motion Perception - physiology</subject><subject>Neurons - physiology</subject><subject>Pattern Recognition, Visual - physiology</subject><subject>Physiology. Development</subject><subject>Reichardt correlator</subject><subject>Space life sciences</subject><subject>Spatio-temporal</subject><subject>Time Factors</subject><issn>0042-6989</issn><issn>1878-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqF0MtOAyEUgGFiNLZeHkEzC2N0MQoDDMNKm8ZbYuJCXRMKh4iZGSpQk769Y9uoO1dsvsM5-RE6IviCYFJfPmPMqrKWjTyTzTnGlRQl2UJj0oim5DWrt9H4h4zQXkrvGGPBK7mLRgQzWTUVG6PridXzrLMPfaF7W-Q3KDJ08xB1W1ho9bJwvs0Qi-AK1y6LLqyshQwmh5gO0I7TbYLDzbuPXm9vXqb35ePT3cN08lgaxqpcykpqajS1NYiZHZZzwaht6HCEoFhQzoVhteHEwQwz4ihwIaEiTlCrZzXQfXS6_ncew8cCUladTwbaVvcQFkkJjDlmNRsgX0MTQ0oRnJpH3-m4VASr73RqlU59d1GyUat0igxzx5sFi1kH9s_UutUATjZAJ6NbF3VvfPp1oqFc8IFdrRkMNT49RJWMh96A9XFIpmzw_1zyBeReia0</recordid><startdate>19990801</startdate><enddate>19990801</enddate><creator>Harris, Robert A.</creator><creator>O’Carroll, David C.</creator><creator>Laughlin, Simon B.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19990801</creationdate><title>Adaptation and the temporal delay filter of fly motion detectors</title><author>Harris, Robert A. ; O’Carroll, David C. ; Laughlin, Simon B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-929a3ca3d6e7bd9285743d8382473073557c46c51feb041f3e579e21f73dab6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adaptation, Ocular - physiology</topic><topic>Animals</topic><topic>Biochemistry. Physiology. Immunology</topic><topic>Biological and medical sciences</topic><topic>Contrast Sensitivity - physiology</topic><topic>Delay filter</topic><topic>Diptera - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Insect</topic><topic>Insecta</topic><topic>Invertebrates</topic><topic>Models, Neurological</topic><topic>Motion adaptation</topic><topic>Motion Perception - physiology</topic><topic>Neurons - physiology</topic><topic>Pattern Recognition, Visual - physiology</topic><topic>Physiology. Development</topic><topic>Reichardt correlator</topic><topic>Space life sciences</topic><topic>Spatio-temporal</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harris, Robert A.</creatorcontrib><creatorcontrib>O’Carroll, David C.</creatorcontrib><creatorcontrib>Laughlin, Simon B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Vision research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harris, Robert A.</au><au>O’Carroll, David C.</au><au>Laughlin, Simon B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptation and the temporal delay filter of fly motion detectors</atitle><jtitle>Vision research (Oxford)</jtitle><addtitle>Vision Res</addtitle><date>1999-08-01</date><risdate>1999</risdate><volume>39</volume><issue>16</issue><spage>2603</spage><epage>2613</epage><pages>2603-2613</pages><issn>0042-6989</issn><eissn>1878-5646</eissn><coden>VISRAM</coden><abstract>Recent accounts attribute motion adaptation to a shortening of the delay filter in elementary motion detectors (EMDs). Using computer modelling and recordings from HS neurons in the drone-fly Eristalis tenax, we present evidence that challenges this theory. (i) Previous evidence for a change in the delay filter comes from ‘image step’ (or ‘velocity impulse’) experiments. We note a large discrepancy between the temporal frequency tuning predicted from these experiments and the observed tuning of motion sensitive cells. (ii) The results of image step experiments are highly sensitive to the experimental method used. (iii) An apparent motion stimulus reveals a much shorter EMD delay than suggested by previous ‘image step’ experiments. This short delay agrees with the observed temporal frequency sensitivity of the unadapted cell. (iv) A key prediction of a shortening delay filter is that the temporal frequency optimum of the cell should show a large shift to higher temporal frequencies after motion adaptation. We show little change in the temporal or spatial frequency (and hence velocity) optima following adaptation.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>10492824</pmid><doi>10.1016/S0042-6989(98)00297-1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0042-6989
ispartof Vision research (Oxford), 1999-08, Vol.39 (16), p.2603-2613
issn 0042-6989
1878-5646
language eng
recordid cdi_proquest_miscellaneous_70050464
source ScienceDirect Freedom Collection
subjects Adaptation, Ocular - physiology
Animals
Biochemistry. Physiology. Immunology
Biological and medical sciences
Contrast Sensitivity - physiology
Delay filter
Diptera - physiology
Fundamental and applied biological sciences. Psychology
Insect
Insecta
Invertebrates
Models, Neurological
Motion adaptation
Motion Perception - physiology
Neurons - physiology
Pattern Recognition, Visual - physiology
Physiology. Development
Reichardt correlator
Space life sciences
Spatio-temporal
Time Factors
title Adaptation and the temporal delay filter of fly motion detectors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptation%20and%20the%20temporal%20delay%20filter%20of%20fly%20motion%20detectors&rft.jtitle=Vision%20research%20(Oxford)&rft.au=Harris,%20Robert%20A.&rft.date=1999-08-01&rft.volume=39&rft.issue=16&rft.spage=2603&rft.epage=2613&rft.pages=2603-2613&rft.issn=0042-6989&rft.eissn=1878-5646&rft.coden=VISRAM&rft_id=info:doi/10.1016/S0042-6989(98)00297-1&rft_dat=%3Cproquest_cross%3E70050464%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-929a3ca3d6e7bd9285743d8382473073557c46c51feb041f3e579e21f73dab6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70050464&rft_id=info:pmid/10492824&rfr_iscdi=true