Loading…

Myonuclear domains in muscle adaptation and disease

Adult skeletal muscle fibers are among the few cell types that are truly multinucleated. Recently, evidence has accumulated supporting a role for the modulation of myonuclear number during muscle remodeling in response to injury, adaptation, and disease. These studies have demonstrated that muscle h...

Full description

Saved in:
Bibliographic Details
Published in:Muscle & nerve 1999-10, Vol.22 (10), p.1350-1360
Main Authors: Allen, David L., Roy, Roland R., Edgerton, V. Reggie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c5193-3db40c0f24da6e3a1ab146c7bd56618fbb2acad98500f22b0babce0b25e4145e3
container_end_page 1360
container_issue 10
container_start_page 1350
container_title Muscle & nerve
container_volume 22
creator Allen, David L.
Roy, Roland R.
Edgerton, V. Reggie
description Adult skeletal muscle fibers are among the few cell types that are truly multinucleated. Recently, evidence has accumulated supporting a role for the modulation of myonuclear number during muscle remodeling in response to injury, adaptation, and disease. These studies have demonstrated that muscle hypertrophy is associated with, and is dependent on, the addition of newly formed myonuclei via the fusion of myogenic cells to the adult myofiber, whereas muscle atrophy and disease appear to be associated with the loss of myonuclei, possibly through apoptotic-like mechanisms. Moreover, these studies also have demonstrated that myonuclear domain size, i. e., the amount of cytoplasm per myonucleus, is unchanged following the acute phase of hypertrophy but is reduced following atrophy. Together these data demonstrate that modulation of myonuclear number or myonuclear domain size (or both) is a mechanism contributing to the remodeling of adult skeletal muscle in response to alterations in the level of normal neuromuscular activity. Copyright 1999 John Wiley & Sons, Inc.
doi_str_mv 10.1002/(SICI)1097-4598(199910)22:10<1350::AID-MUS3>3.0.CO;2-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70059572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70059572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5193-3db40c0f24da6e3a1ab146c7bd56618fbb2acad98500f22b0babce0b25e4145e3</originalsourceid><addsrcrecordid>eNqFkV1r1EAUhoModq3-A5FciLQXWc98JJOsUmij1pW2e1Gr4s3hzGQWovnYZhLq_nsnzdIKCl4NM-eZd16eCYIjBnMGwF8fXC7z5SGDTEUyztIDlmUZg0POFwzeMhHDYnG8fBedX12KIzGHeb56w6P0QTC7u_IwmAGTaZSI7Nte8MS5HwDA0kQ9DvYYyFRlALNAnG_bZjCVpS4s2prKxoVlE9aD82chFbTpqS_bJqSmCIvSWXL2afBoTZWzz3brfnD14f3n_GN0tjpd5sdnkYlZJiJRaAkG1lwWlFhBjDSTiVG6iJOEpWutORkqsjQGD3ENmrSxoHlsJZOxFfvBqyl307XXg3U91qUztqqose3gUAHEWay4B79MoOla5zq7xk1X1tRtkQGOOhFHnTi6wdENTjqR81vC60T0OnHUiQIB8xVyTH3wi12DQde2-CN28ueBlzuAnKFq3VFjSnfPcc4Ul_cFb8rKbv9q999y_-h2u_fBz6fghhxh03cOOYD0H89Srvw4msal6-2vu3ep-4mJEirGrxeneMJPGP9-keMn8RvP-bO7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70059572</pqid></control><display><type>article</type><title>Myonuclear domains in muscle adaptation and disease</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Allen, David L. ; Roy, Roland R. ; Edgerton, V. Reggie</creator><creatorcontrib>Allen, David L. ; Roy, Roland R. ; Edgerton, V. Reggie</creatorcontrib><description>Adult skeletal muscle fibers are among the few cell types that are truly multinucleated. Recently, evidence has accumulated supporting a role for the modulation of myonuclear number during muscle remodeling in response to injury, adaptation, and disease. These studies have demonstrated that muscle hypertrophy is associated with, and is dependent on, the addition of newly formed myonuclei via the fusion of myogenic cells to the adult myofiber, whereas muscle atrophy and disease appear to be associated with the loss of myonuclei, possibly through apoptotic-like mechanisms. Moreover, these studies also have demonstrated that myonuclear domain size, i. e., the amount of cytoplasm per myonucleus, is unchanged following the acute phase of hypertrophy but is reduced following atrophy. Together these data demonstrate that modulation of myonuclear number or myonuclear domain size (or both) is a mechanism contributing to the remodeling of adult skeletal muscle in response to alterations in the level of normal neuromuscular activity. Copyright 1999 John Wiley &amp; Sons, Inc.</description><identifier>ISSN: 0148-639X</identifier><identifier>EISSN: 1097-4598</identifier><identifier>DOI: 10.1002/(SICI)1097-4598(199910)22:10&lt;1350::AID-MUS3&gt;3.0.CO;2-8</identifier><identifier>PMID: 10487900</identifier><identifier>CODEN: MUNEDE</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Adaptation, Physiological ; Aging - physiology ; Animals ; apoptosis ; Apoptosis - physiology ; Biological and medical sciences ; fiber size ; Fundamental and applied biological sciences. Psychology ; Humans ; Hypertrophy ; Life Sciences (General) ; Muscle Fibers, Skeletal - physiology ; muscle plasticity ; Muscle, Skeletal - pathology ; Muscle, Skeletal - physiology ; Muscle, Skeletal - physiopathology ; Muscular Atrophy - physiopathology ; Muscular Diseases - physiopathology ; myofibers ; space flight ; Space life sciences ; Striated muscle. Tendons ; Vertebrates: osteoarticular system, musculoskeletal system</subject><ispartof>Muscle &amp; nerve, 1999-10, Vol.22 (10), p.1350-1360</ispartof><rights>Copyright © 1999 John Wiley &amp; Sons, Inc.</rights><rights>2000 INIST-CNRS</rights><rights>Copyright 1999 John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5193-3db40c0f24da6e3a1ab146c7bd56618fbb2acad98500f22b0babce0b25e4145e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1221724$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10487900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Allen, David L.</creatorcontrib><creatorcontrib>Roy, Roland R.</creatorcontrib><creatorcontrib>Edgerton, V. Reggie</creatorcontrib><title>Myonuclear domains in muscle adaptation and disease</title><title>Muscle &amp; nerve</title><addtitle>Muscle Nerve</addtitle><description>Adult skeletal muscle fibers are among the few cell types that are truly multinucleated. Recently, evidence has accumulated supporting a role for the modulation of myonuclear number during muscle remodeling in response to injury, adaptation, and disease. These studies have demonstrated that muscle hypertrophy is associated with, and is dependent on, the addition of newly formed myonuclei via the fusion of myogenic cells to the adult myofiber, whereas muscle atrophy and disease appear to be associated with the loss of myonuclei, possibly through apoptotic-like mechanisms. Moreover, these studies also have demonstrated that myonuclear domain size, i. e., the amount of cytoplasm per myonucleus, is unchanged following the acute phase of hypertrophy but is reduced following atrophy. Together these data demonstrate that modulation of myonuclear number or myonuclear domain size (or both) is a mechanism contributing to the remodeling of adult skeletal muscle in response to alterations in the level of normal neuromuscular activity. Copyright 1999 John Wiley &amp; Sons, Inc.</description><subject>Adaptation, Physiological</subject><subject>Aging - physiology</subject><subject>Animals</subject><subject>apoptosis</subject><subject>Apoptosis - physiology</subject><subject>Biological and medical sciences</subject><subject>fiber size</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Life Sciences (General)</subject><subject>Muscle Fibers, Skeletal - physiology</subject><subject>muscle plasticity</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscle, Skeletal - physiopathology</subject><subject>Muscular Atrophy - physiopathology</subject><subject>Muscular Diseases - physiopathology</subject><subject>myofibers</subject><subject>space flight</subject><subject>Space life sciences</subject><subject>Striated muscle. Tendons</subject><subject>Vertebrates: osteoarticular system, musculoskeletal system</subject><issn>0148-639X</issn><issn>1097-4598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkV1r1EAUhoModq3-A5FciLQXWc98JJOsUmij1pW2e1Gr4s3hzGQWovnYZhLq_nsnzdIKCl4NM-eZd16eCYIjBnMGwF8fXC7z5SGDTEUyztIDlmUZg0POFwzeMhHDYnG8fBedX12KIzGHeb56w6P0QTC7u_IwmAGTaZSI7Nte8MS5HwDA0kQ9DvYYyFRlALNAnG_bZjCVpS4s2prKxoVlE9aD82chFbTpqS_bJqSmCIvSWXL2afBoTZWzz3brfnD14f3n_GN0tjpd5sdnkYlZJiJRaAkG1lwWlFhBjDSTiVG6iJOEpWutORkqsjQGD3ENmrSxoHlsJZOxFfvBqyl307XXg3U91qUztqqose3gUAHEWay4B79MoOla5zq7xk1X1tRtkQGOOhFHnTi6wdENTjqR81vC60T0OnHUiQIB8xVyTH3wi12DQde2-CN28ueBlzuAnKFq3VFjSnfPcc4Ul_cFb8rKbv9q999y_-h2u_fBz6fghhxh03cOOYD0H89Srvw4msal6-2vu3ep-4mJEirGrxeneMJPGP9-keMn8RvP-bO7</recordid><startdate>199910</startdate><enddate>199910</enddate><creator>Allen, David L.</creator><creator>Roy, Roland R.</creator><creator>Edgerton, V. Reggie</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199910</creationdate><title>Myonuclear domains in muscle adaptation and disease</title><author>Allen, David L. ; Roy, Roland R. ; Edgerton, V. Reggie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5193-3db40c0f24da6e3a1ab146c7bd56618fbb2acad98500f22b0babce0b25e4145e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adaptation, Physiological</topic><topic>Aging - physiology</topic><topic>Animals</topic><topic>apoptosis</topic><topic>Apoptosis - physiology</topic><topic>Biological and medical sciences</topic><topic>fiber size</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Life Sciences (General)</topic><topic>Muscle Fibers, Skeletal - physiology</topic><topic>muscle plasticity</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscle, Skeletal - physiopathology</topic><topic>Muscular Atrophy - physiopathology</topic><topic>Muscular Diseases - physiopathology</topic><topic>myofibers</topic><topic>space flight</topic><topic>Space life sciences</topic><topic>Striated muscle. Tendons</topic><topic>Vertebrates: osteoarticular system, musculoskeletal system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allen, David L.</creatorcontrib><creatorcontrib>Roy, Roland R.</creatorcontrib><creatorcontrib>Edgerton, V. Reggie</creatorcontrib><collection>Istex</collection><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Muscle &amp; nerve</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allen, David L.</au><au>Roy, Roland R.</au><au>Edgerton, V. Reggie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myonuclear domains in muscle adaptation and disease</atitle><jtitle>Muscle &amp; nerve</jtitle><addtitle>Muscle Nerve</addtitle><date>1999-10</date><risdate>1999</risdate><volume>22</volume><issue>10</issue><spage>1350</spage><epage>1360</epage><pages>1350-1360</pages><issn>0148-639X</issn><eissn>1097-4598</eissn><coden>MUNEDE</coden><abstract>Adult skeletal muscle fibers are among the few cell types that are truly multinucleated. Recently, evidence has accumulated supporting a role for the modulation of myonuclear number during muscle remodeling in response to injury, adaptation, and disease. These studies have demonstrated that muscle hypertrophy is associated with, and is dependent on, the addition of newly formed myonuclei via the fusion of myogenic cells to the adult myofiber, whereas muscle atrophy and disease appear to be associated with the loss of myonuclei, possibly through apoptotic-like mechanisms. Moreover, these studies also have demonstrated that myonuclear domain size, i. e., the amount of cytoplasm per myonucleus, is unchanged following the acute phase of hypertrophy but is reduced following atrophy. Together these data demonstrate that modulation of myonuclear number or myonuclear domain size (or both) is a mechanism contributing to the remodeling of adult skeletal muscle in response to alterations in the level of normal neuromuscular activity. Copyright 1999 John Wiley &amp; Sons, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>10487900</pmid><doi>10.1002/(SICI)1097-4598(199910)22:10&lt;1350::AID-MUS3&gt;3.0.CO;2-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-639X
ispartof Muscle & nerve, 1999-10, Vol.22 (10), p.1350-1360
issn 0148-639X
1097-4598
language eng
recordid cdi_proquest_miscellaneous_70059572
source Wiley-Blackwell Read & Publish Collection
subjects Adaptation, Physiological
Aging - physiology
Animals
apoptosis
Apoptosis - physiology
Biological and medical sciences
fiber size
Fundamental and applied biological sciences. Psychology
Humans
Hypertrophy
Life Sciences (General)
Muscle Fibers, Skeletal - physiology
muscle plasticity
Muscle, Skeletal - pathology
Muscle, Skeletal - physiology
Muscle, Skeletal - physiopathology
Muscular Atrophy - physiopathology
Muscular Diseases - physiopathology
myofibers
space flight
Space life sciences
Striated muscle. Tendons
Vertebrates: osteoarticular system, musculoskeletal system
title Myonuclear domains in muscle adaptation and disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myonuclear%20domains%20in%20muscle%20adaptation%20and%20disease&rft.jtitle=Muscle%20&%20nerve&rft.au=Allen,%20David%20L.&rft.date=1999-10&rft.volume=22&rft.issue=10&rft.spage=1350&rft.epage=1360&rft.pages=1350-1360&rft.issn=0148-639X&rft.eissn=1097-4598&rft.coden=MUNEDE&rft_id=info:doi/10.1002/(SICI)1097-4598(199910)22:10%3C1350::AID-MUS3%3E3.0.CO;2-8&rft_dat=%3Cproquest_cross%3E70059572%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5193-3db40c0f24da6e3a1ab146c7bd56618fbb2acad98500f22b0babce0b25e4145e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70059572&rft_id=info:pmid/10487900&rfr_iscdi=true