Loading…
Myonuclear domains in muscle adaptation and disease
Adult skeletal muscle fibers are among the few cell types that are truly multinucleated. Recently, evidence has accumulated supporting a role for the modulation of myonuclear number during muscle remodeling in response to injury, adaptation, and disease. These studies have demonstrated that muscle h...
Saved in:
Published in: | Muscle & nerve 1999-10, Vol.22 (10), p.1350-1360 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c5193-3db40c0f24da6e3a1ab146c7bd56618fbb2acad98500f22b0babce0b25e4145e3 |
container_end_page | 1360 |
container_issue | 10 |
container_start_page | 1350 |
container_title | Muscle & nerve |
container_volume | 22 |
creator | Allen, David L. Roy, Roland R. Edgerton, V. Reggie |
description | Adult skeletal muscle fibers are among the few cell types that are truly multinucleated. Recently, evidence has accumulated supporting a role for the modulation of myonuclear number during muscle remodeling in response to injury, adaptation, and disease. These studies have demonstrated that muscle hypertrophy is associated with, and is dependent on, the addition of newly formed myonuclei via the fusion of myogenic cells to the adult myofiber, whereas muscle atrophy and disease appear to be associated with the loss of myonuclei, possibly through apoptotic-like mechanisms. Moreover, these studies also have demonstrated that myonuclear domain size, i. e., the amount of cytoplasm per myonucleus, is unchanged following the acute phase of hypertrophy but is reduced following atrophy. Together these data demonstrate that modulation of myonuclear number or myonuclear domain size (or both) is a mechanism contributing to the remodeling of adult skeletal muscle in response to alterations in the level of normal neuromuscular activity. Copyright 1999 John Wiley & Sons, Inc. |
doi_str_mv | 10.1002/(SICI)1097-4598(199910)22:10<1350::AID-MUS3>3.0.CO;2-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70059572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70059572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5193-3db40c0f24da6e3a1ab146c7bd56618fbb2acad98500f22b0babce0b25e4145e3</originalsourceid><addsrcrecordid>eNqFkV1r1EAUhoModq3-A5FciLQXWc98JJOsUmij1pW2e1Gr4s3hzGQWovnYZhLq_nsnzdIKCl4NM-eZd16eCYIjBnMGwF8fXC7z5SGDTEUyztIDlmUZg0POFwzeMhHDYnG8fBedX12KIzGHeb56w6P0QTC7u_IwmAGTaZSI7Nte8MS5HwDA0kQ9DvYYyFRlALNAnG_bZjCVpS4s2prKxoVlE9aD82chFbTpqS_bJqSmCIvSWXL2afBoTZWzz3brfnD14f3n_GN0tjpd5sdnkYlZJiJRaAkG1lwWlFhBjDSTiVG6iJOEpWutORkqsjQGD3ENmrSxoHlsJZOxFfvBqyl307XXg3U91qUztqqose3gUAHEWay4B79MoOla5zq7xk1X1tRtkQGOOhFHnTi6wdENTjqR81vC60T0OnHUiQIB8xVyTH3wi12DQde2-CN28ueBlzuAnKFq3VFjSnfPcc4Ul_cFb8rKbv9q999y_-h2u_fBz6fghhxh03cOOYD0H89Srvw4msal6-2vu3ep-4mJEirGrxeneMJPGP9-keMn8RvP-bO7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70059572</pqid></control><display><type>article</type><title>Myonuclear domains in muscle adaptation and disease</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Allen, David L. ; Roy, Roland R. ; Edgerton, V. Reggie</creator><creatorcontrib>Allen, David L. ; Roy, Roland R. ; Edgerton, V. Reggie</creatorcontrib><description>Adult skeletal muscle fibers are among the few cell types that are truly multinucleated. Recently, evidence has accumulated supporting a role for the modulation of myonuclear number during muscle remodeling in response to injury, adaptation, and disease. These studies have demonstrated that muscle hypertrophy is associated with, and is dependent on, the addition of newly formed myonuclei via the fusion of myogenic cells to the adult myofiber, whereas muscle atrophy and disease appear to be associated with the loss of myonuclei, possibly through apoptotic-like mechanisms. Moreover, these studies also have demonstrated that myonuclear domain size, i. e., the amount of cytoplasm per myonucleus, is unchanged following the acute phase of hypertrophy but is reduced following atrophy. Together these data demonstrate that modulation of myonuclear number or myonuclear domain size (or both) is a mechanism contributing to the remodeling of adult skeletal muscle in response to alterations in the level of normal neuromuscular activity. Copyright 1999 John Wiley & Sons, Inc.</description><identifier>ISSN: 0148-639X</identifier><identifier>EISSN: 1097-4598</identifier><identifier>DOI: 10.1002/(SICI)1097-4598(199910)22:10<1350::AID-MUS3>3.0.CO;2-8</identifier><identifier>PMID: 10487900</identifier><identifier>CODEN: MUNEDE</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Adaptation, Physiological ; Aging - physiology ; Animals ; apoptosis ; Apoptosis - physiology ; Biological and medical sciences ; fiber size ; Fundamental and applied biological sciences. Psychology ; Humans ; Hypertrophy ; Life Sciences (General) ; Muscle Fibers, Skeletal - physiology ; muscle plasticity ; Muscle, Skeletal - pathology ; Muscle, Skeletal - physiology ; Muscle, Skeletal - physiopathology ; Muscular Atrophy - physiopathology ; Muscular Diseases - physiopathology ; myofibers ; space flight ; Space life sciences ; Striated muscle. Tendons ; Vertebrates: osteoarticular system, musculoskeletal system</subject><ispartof>Muscle & nerve, 1999-10, Vol.22 (10), p.1350-1360</ispartof><rights>Copyright © 1999 John Wiley & Sons, Inc.</rights><rights>2000 INIST-CNRS</rights><rights>Copyright 1999 John Wiley & Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5193-3db40c0f24da6e3a1ab146c7bd56618fbb2acad98500f22b0babce0b25e4145e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1221724$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10487900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Allen, David L.</creatorcontrib><creatorcontrib>Roy, Roland R.</creatorcontrib><creatorcontrib>Edgerton, V. Reggie</creatorcontrib><title>Myonuclear domains in muscle adaptation and disease</title><title>Muscle & nerve</title><addtitle>Muscle Nerve</addtitle><description>Adult skeletal muscle fibers are among the few cell types that are truly multinucleated. Recently, evidence has accumulated supporting a role for the modulation of myonuclear number during muscle remodeling in response to injury, adaptation, and disease. These studies have demonstrated that muscle hypertrophy is associated with, and is dependent on, the addition of newly formed myonuclei via the fusion of myogenic cells to the adult myofiber, whereas muscle atrophy and disease appear to be associated with the loss of myonuclei, possibly through apoptotic-like mechanisms. Moreover, these studies also have demonstrated that myonuclear domain size, i. e., the amount of cytoplasm per myonucleus, is unchanged following the acute phase of hypertrophy but is reduced following atrophy. Together these data demonstrate that modulation of myonuclear number or myonuclear domain size (or both) is a mechanism contributing to the remodeling of adult skeletal muscle in response to alterations in the level of normal neuromuscular activity. Copyright 1999 John Wiley & Sons, Inc.</description><subject>Adaptation, Physiological</subject><subject>Aging - physiology</subject><subject>Animals</subject><subject>apoptosis</subject><subject>Apoptosis - physiology</subject><subject>Biological and medical sciences</subject><subject>fiber size</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Life Sciences (General)</subject><subject>Muscle Fibers, Skeletal - physiology</subject><subject>muscle plasticity</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscle, Skeletal - physiopathology</subject><subject>Muscular Atrophy - physiopathology</subject><subject>Muscular Diseases - physiopathology</subject><subject>myofibers</subject><subject>space flight</subject><subject>Space life sciences</subject><subject>Striated muscle. Tendons</subject><subject>Vertebrates: osteoarticular system, musculoskeletal system</subject><issn>0148-639X</issn><issn>1097-4598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkV1r1EAUhoModq3-A5FciLQXWc98JJOsUmij1pW2e1Gr4s3hzGQWovnYZhLq_nsnzdIKCl4NM-eZd16eCYIjBnMGwF8fXC7z5SGDTEUyztIDlmUZg0POFwzeMhHDYnG8fBedX12KIzGHeb56w6P0QTC7u_IwmAGTaZSI7Nte8MS5HwDA0kQ9DvYYyFRlALNAnG_bZjCVpS4s2prKxoVlE9aD82chFbTpqS_bJqSmCIvSWXL2afBoTZWzz3brfnD14f3n_GN0tjpd5sdnkYlZJiJRaAkG1lwWlFhBjDSTiVG6iJOEpWutORkqsjQGD3ENmrSxoHlsJZOxFfvBqyl307XXg3U91qUztqqose3gUAHEWay4B79MoOla5zq7xk1X1tRtkQGOOhFHnTi6wdENTjqR81vC60T0OnHUiQIB8xVyTH3wi12DQde2-CN28ueBlzuAnKFq3VFjSnfPcc4Ul_cFb8rKbv9q999y_-h2u_fBz6fghhxh03cOOYD0H89Srvw4msal6-2vu3ep-4mJEirGrxeneMJPGP9-keMn8RvP-bO7</recordid><startdate>199910</startdate><enddate>199910</enddate><creator>Allen, David L.</creator><creator>Roy, Roland R.</creator><creator>Edgerton, V. Reggie</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199910</creationdate><title>Myonuclear domains in muscle adaptation and disease</title><author>Allen, David L. ; Roy, Roland R. ; Edgerton, V. Reggie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5193-3db40c0f24da6e3a1ab146c7bd56618fbb2acad98500f22b0babce0b25e4145e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adaptation, Physiological</topic><topic>Aging - physiology</topic><topic>Animals</topic><topic>apoptosis</topic><topic>Apoptosis - physiology</topic><topic>Biological and medical sciences</topic><topic>fiber size</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Life Sciences (General)</topic><topic>Muscle Fibers, Skeletal - physiology</topic><topic>muscle plasticity</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscle, Skeletal - physiopathology</topic><topic>Muscular Atrophy - physiopathology</topic><topic>Muscular Diseases - physiopathology</topic><topic>myofibers</topic><topic>space flight</topic><topic>Space life sciences</topic><topic>Striated muscle. Tendons</topic><topic>Vertebrates: osteoarticular system, musculoskeletal system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allen, David L.</creatorcontrib><creatorcontrib>Roy, Roland R.</creatorcontrib><creatorcontrib>Edgerton, V. Reggie</creatorcontrib><collection>Istex</collection><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Muscle & nerve</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allen, David L.</au><au>Roy, Roland R.</au><au>Edgerton, V. Reggie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myonuclear domains in muscle adaptation and disease</atitle><jtitle>Muscle & nerve</jtitle><addtitle>Muscle Nerve</addtitle><date>1999-10</date><risdate>1999</risdate><volume>22</volume><issue>10</issue><spage>1350</spage><epage>1360</epage><pages>1350-1360</pages><issn>0148-639X</issn><eissn>1097-4598</eissn><coden>MUNEDE</coden><abstract>Adult skeletal muscle fibers are among the few cell types that are truly multinucleated. Recently, evidence has accumulated supporting a role for the modulation of myonuclear number during muscle remodeling in response to injury, adaptation, and disease. These studies have demonstrated that muscle hypertrophy is associated with, and is dependent on, the addition of newly formed myonuclei via the fusion of myogenic cells to the adult myofiber, whereas muscle atrophy and disease appear to be associated with the loss of myonuclei, possibly through apoptotic-like mechanisms. Moreover, these studies also have demonstrated that myonuclear domain size, i. e., the amount of cytoplasm per myonucleus, is unchanged following the acute phase of hypertrophy but is reduced following atrophy. Together these data demonstrate that modulation of myonuclear number or myonuclear domain size (or both) is a mechanism contributing to the remodeling of adult skeletal muscle in response to alterations in the level of normal neuromuscular activity. Copyright 1999 John Wiley & Sons, Inc.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>10487900</pmid><doi>10.1002/(SICI)1097-4598(199910)22:10<1350::AID-MUS3>3.0.CO;2-8</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-639X |
ispartof | Muscle & nerve, 1999-10, Vol.22 (10), p.1350-1360 |
issn | 0148-639X 1097-4598 |
language | eng |
recordid | cdi_proquest_miscellaneous_70059572 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adaptation, Physiological Aging - physiology Animals apoptosis Apoptosis - physiology Biological and medical sciences fiber size Fundamental and applied biological sciences. Psychology Humans Hypertrophy Life Sciences (General) Muscle Fibers, Skeletal - physiology muscle plasticity Muscle, Skeletal - pathology Muscle, Skeletal - physiology Muscle, Skeletal - physiopathology Muscular Atrophy - physiopathology Muscular Diseases - physiopathology myofibers space flight Space life sciences Striated muscle. Tendons Vertebrates: osteoarticular system, musculoskeletal system |
title | Myonuclear domains in muscle adaptation and disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myonuclear%20domains%20in%20muscle%20adaptation%20and%20disease&rft.jtitle=Muscle%20&%20nerve&rft.au=Allen,%20David%20L.&rft.date=1999-10&rft.volume=22&rft.issue=10&rft.spage=1350&rft.epage=1360&rft.pages=1350-1360&rft.issn=0148-639X&rft.eissn=1097-4598&rft.coden=MUNEDE&rft_id=info:doi/10.1002/(SICI)1097-4598(199910)22:10%3C1350::AID-MUS3%3E3.0.CO;2-8&rft_dat=%3Cproquest_cross%3E70059572%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5193-3db40c0f24da6e3a1ab146c7bd56618fbb2acad98500f22b0babce0b25e4145e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70059572&rft_id=info:pmid/10487900&rfr_iscdi=true |