Loading…

Group I twintrons: Genetic elements in myxomycete and schizopyrenid amoeboflagellate ribosomal DNAs

Protists are unicellular eukaryotes which represent a significant fraction of the global biodiversity. The myxomycete Didymium and the schizopyrenid amoeboflagellate Naegleria are distantly related protists. However, we have noted several striking similarities in life cycle, cell morphology, and rib...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Biotechnology 1998-09, Vol.64 (1), p.63-74
Main Authors: Einvik, Christer, Elde, Morten, Johansen, Steinar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Protists are unicellular eukaryotes which represent a significant fraction of the global biodiversity. The myxomycete Didymium and the schizopyrenid amoeboflagellate Naegleria are distantly related protists. However, we have noted several striking similarities in life cycle, cell morphology, and ribosomal DNA organization between these organisms. Both have multicopy nuclear extrachromosomal ribosomal DNAs. Here the small subunit ribosomal RNA genes are interrupted by an optional group I twintron, a novel category among the group I introns. Group I twintrons are mobile self-splicing introns of 1.3–1.4 kb in size, with a complex organization at the RNA level. A group I twintron consists of two distinct ribozymes (catalytic RNAs) with different functions in RNA processing, and an open reading frame encoding a functional homing endonuclease—all with prospects of application as molecular tools in biotechnology. Updated RNA secondary structure models of group I twintrons, as well as an example of in vitro ribozyme activity, are presented. We suggest that the group I twintrons have been independently established in myxomycetes and schizopyrenid amoeboflagellates by horizontal gene transfer due to a combination of the phagocytotic behavior in natural environments and the extrachromosomal multicopy nature of ribosomal DNA.
ISSN:0168-1656
1873-4863
DOI:10.1016/S0168-1656(98)00104-7