Loading…
Structural, functional, and biochemical changes in the brain during modeling of dopamine system disturbances in rats
Dysfunction of the dopamine system was modeled in Wistar rats by injection of 50 mg/kg L-dopa over 4 weeks. Experimental rats demonstrated considerably decreased locomotor activity and increased emotional strain compared to the control group. Structural changes consisted in a significant decrease in...
Saved in:
Published in: | Bulletin of experimental biology and medicine 2007-07, Vol.144 (1), p.36-38 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dysfunction of the dopamine system was modeled in Wistar rats by injection of 50 mg/kg L-dopa over 4 weeks. Experimental rats demonstrated considerably decreased locomotor activity and increased emotional strain compared to the control group. Structural changes consisted in a significant decrease in the size of neuronal bodies in the sensorimotor cortex (layers III and V) and caudate nucleus together with changed variability of these parameters compared to the corresponding values in the control. The neuroglial index increased by 22% in layer V, tended to decrease in layer III, and remained unchanged in the caudate nucleus. L-Dopa changed specific activity of enzymes: tyrosine hydroxylase activity in the sensorimotor cortex decreased by 25%, while monoamine oxidase B activity in the caudate nucleus increased by 33%. Thus, dysfunction of the dopamine system resulting in changes in dopamine metabolism not only leads to structural and functional rearrangements reducing functional capacities of the cell systems, but is also associated with compensatory and repair reactions in the brain. |
---|---|
ISSN: | 0007-4888 1573-8221 |
DOI: | 10.1007/s10517-007-0247-z |