Loading…

1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS) is encoded by multicopy genes in gymnosperms Ginkgo biloba and Pinus taeda

Isoprenoids are synthesized through the condensation of five-carbon intermediates, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), derived from two distinct biosynthetic routes: cytosolic mevalonate (MVA) and plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathways. 1-Hydro...

Full description

Saved in:
Bibliographic Details
Published in:Planta 2008-01, Vol.227 (2), p.287-298
Main Authors: Kim, Sang-Min, Kuzuyama, Tomohisa, Kobayashi, Akio, Sando, Tomoki, Chang, Yung-Jin, Kim, Soo-Un
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c511t-f06656b10930cf124b6bc725b0f5013ae8253a7b78dece5e61adb4790d573fd63
cites cdi_FETCH-LOGICAL-c511t-f06656b10930cf124b6bc725b0f5013ae8253a7b78dece5e61adb4790d573fd63
container_end_page 298
container_issue 2
container_start_page 287
container_title Planta
container_volume 227
creator Kim, Sang-Min
Kuzuyama, Tomohisa
Kobayashi, Akio
Sando, Tomoki
Chang, Yung-Jin
Kim, Soo-Un
description Isoprenoids are synthesized through the condensation of five-carbon intermediates, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), derived from two distinct biosynthetic routes: cytosolic mevalonate (MVA) and plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathways. 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS; EC 1.17.1.2), which catalyzes the last step of MEP pathway, was cloned as a multicopy gene from gymnosperms Ginkgo biloba (GbIDS1, GbIDS2, and GbIDS2-1) and Pinus taeda (PtIDS1 and PtIDS2), and characterized. Phylogenetic tree constructed with other plant IDSs demonstrated gymnosperm IDSs were distinctively different from angiosperm IDSs. The gymnosperm IDS clade contained two subclades, one composed of GbIDS1 and PtIDS1, and the other composed of GbIDS2, GbIDS2-1, and PtIDS2. G. biloba IDSs, except GbIDS2-1, successfully complemented Escherichia coli DLYT1, a lytB disruptant, confirming the in vivo competency of isozymes. During the 4 weeks study period, although transcript levels of GbIDS1s were similar both in roots and leaves of cultured G. biloba embryo, the transcripts of GbIDS2 predominantly occurred in the embryo roots, where diterpene ginkgolides are biosynthesized. Levels of PtIDS2 transcripts in the diterpenoid resin-producing wood were 4-5 times higher than those in other tissues. Higher levels of GbIDS1 transcripts were induced by light, whereas those of GbIDS2 were increased by methyl jasmonate treatment. These results strongly imply GbIDS2 and PtIDS2 have high correlation with secondary metabolism. In Arabidopsis transient expression system, N-terminal 100 amino acid residues of GbIDS1 delivered fused GFP protein into chloroplast as well as cytosol and nucleus, whereas those of GbIDS2, GbIDS2-1, and two PtIDSs delivered GFP only into chloroplast.
doi_str_mv 10.1007/s00425-007-0616-x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70087767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23389867</jstor_id><sourcerecordid>23389867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-f06656b10930cf124b6bc725b0f5013ae8253a7b78dece5e61adb4790d573fd63</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiMEoqXwABwACwnUHgxjO46TIyqlrVQJpNJzZMeT3SyJvbUTafMIvDVeZcVKHDh5pPn-f8bzZ9lrBp8YgPocAXIuaSopFKyguyfZKcsFpxzy8ml2CpBqqIQ8yV7EuAFITaWeZydMqUKUhTrNfjN6M9vgdzPldMBxPfepOL-6oGYa0c09yanttmsft2s9Iglop2bUEcn57df7C9JFgq7xFi0xMxmmfuwav53JCh1G0jmymgeXxBiGSK4792vliel6bzTRzpIfnZsiGTVa_TJ71uo-4qvDe5Y9fLv6eXlD775f315-uaONZGykLRSFLAxL34KmZTw3hWkUlwZaCUxoLLkUWhlVWmxQYsG0NbmqwEolWluIs-zj4rsN_nHCONZDFxvse-3QT7FWAGU6j0rg-3_AjZ-CS7vVHKCqmCr3bmyBmuBjDNjW29ANOsw1g3ofUr2EVO_LfUj1LmneHownM6A9Kg6pJODDAdCx0X0btGu6eOSqSpZKyMTxhYup5VYYjhv-b_qbRbSJow9_TbkQZbUMf7f0W-1rvQpp8MM9T6dNdxGcV5X4A192vAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200991786</pqid></control><display><type>article</type><title>1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS) is encoded by multicopy genes in gymnosperms Ginkgo biloba and Pinus taeda</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Springer Link</source><creator>Kim, Sang-Min ; Kuzuyama, Tomohisa ; Kobayashi, Akio ; Sando, Tomoki ; Chang, Yung-Jin ; Kim, Soo-Un</creator><creatorcontrib>Kim, Sang-Min ; Kuzuyama, Tomohisa ; Kobayashi, Akio ; Sando, Tomoki ; Chang, Yung-Jin ; Kim, Soo-Un</creatorcontrib><description>Isoprenoids are synthesized through the condensation of five-carbon intermediates, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), derived from two distinct biosynthetic routes: cytosolic mevalonate (MVA) and plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathways. 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS; EC 1.17.1.2), which catalyzes the last step of MEP pathway, was cloned as a multicopy gene from gymnosperms Ginkgo biloba (GbIDS1, GbIDS2, and GbIDS2-1) and Pinus taeda (PtIDS1 and PtIDS2), and characterized. Phylogenetic tree constructed with other plant IDSs demonstrated gymnosperm IDSs were distinctively different from angiosperm IDSs. The gymnosperm IDS clade contained two subclades, one composed of GbIDS1 and PtIDS1, and the other composed of GbIDS2, GbIDS2-1, and PtIDS2. G. biloba IDSs, except GbIDS2-1, successfully complemented Escherichia coli DLYT1, a lytB disruptant, confirming the in vivo competency of isozymes. During the 4 weeks study period, although transcript levels of GbIDS1s were similar both in roots and leaves of cultured G. biloba embryo, the transcripts of GbIDS2 predominantly occurred in the embryo roots, where diterpene ginkgolides are biosynthesized. Levels of PtIDS2 transcripts in the diterpenoid resin-producing wood were 4-5 times higher than those in other tissues. Higher levels of GbIDS1 transcripts were induced by light, whereas those of GbIDS2 were increased by methyl jasmonate treatment. These results strongly imply GbIDS2 and PtIDS2 have high correlation with secondary metabolism. In Arabidopsis transient expression system, N-terminal 100 amino acid residues of GbIDS1 delivered fused GFP protein into chloroplast as well as cytosol and nucleus, whereas those of GbIDS2, GbIDS2-1, and two PtIDSs delivered GFP only into chloroplast.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-007-0616-x</identifier><identifier>PMID: 17763867</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS) ; Agriculture ; Amino Acid Sequence ; Amino acids ; Biological and medical sciences ; Biomedical and Life Sciences ; Biosynthesis ; Complementary DNA ; Diphosphates ; E coli ; Ecology ; Embryos ; Forestry ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling ; Gene Expression Regulation, Plant - radiation effects ; Genes ; Genes, Plant - genetics ; Ginkgo biloba ; Ginkgo biloba - enzymology ; Ginkgo biloba - genetics ; Ginkgo biloba - radiation effects ; Ginkgolide ; Gymnosperms ; Isoprenoid ; Life Sciences ; Light ; Metabolism ; Molecular Sequence Data ; Nitrogen metabolism ; Nonmevalonate pathway (MEP pathway) ; Original Article ; Oxidoreductases - chemistry ; Oxidoreductases - genetics ; Phylogeny ; Pine trees ; Pinus taeda ; Pinus taeda - enzymology ; Pinus taeda - genetics ; Pinus taeda - radiation effects ; Plant physiology and development ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Plants ; Plasmids ; RNA, Plant - genetics ; RNA, Plant - metabolism ; Roots ; Terpenoids</subject><ispartof>Planta, 2008-01, Vol.227 (2), p.287-298</ispartof><rights>Springer-Verlag Berlin Heidelberg 2008</rights><rights>Springer-Verlag 2007</rights><rights>2008 INIST-CNRS</rights><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-f06656b10930cf124b6bc725b0f5013ae8253a7b78dece5e61adb4790d573fd63</citedby><cites>FETCH-LOGICAL-c511t-f06656b10930cf124b6bc725b0f5013ae8253a7b78dece5e61adb4790d573fd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23389867$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23389867$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19958735$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17763867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Sang-Min</creatorcontrib><creatorcontrib>Kuzuyama, Tomohisa</creatorcontrib><creatorcontrib>Kobayashi, Akio</creatorcontrib><creatorcontrib>Sando, Tomoki</creatorcontrib><creatorcontrib>Chang, Yung-Jin</creatorcontrib><creatorcontrib>Kim, Soo-Un</creatorcontrib><title>1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS) is encoded by multicopy genes in gymnosperms Ginkgo biloba and Pinus taeda</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Isoprenoids are synthesized through the condensation of five-carbon intermediates, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), derived from two distinct biosynthetic routes: cytosolic mevalonate (MVA) and plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathways. 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS; EC 1.17.1.2), which catalyzes the last step of MEP pathway, was cloned as a multicopy gene from gymnosperms Ginkgo biloba (GbIDS1, GbIDS2, and GbIDS2-1) and Pinus taeda (PtIDS1 and PtIDS2), and characterized. Phylogenetic tree constructed with other plant IDSs demonstrated gymnosperm IDSs were distinctively different from angiosperm IDSs. The gymnosperm IDS clade contained two subclades, one composed of GbIDS1 and PtIDS1, and the other composed of GbIDS2, GbIDS2-1, and PtIDS2. G. biloba IDSs, except GbIDS2-1, successfully complemented Escherichia coli DLYT1, a lytB disruptant, confirming the in vivo competency of isozymes. During the 4 weeks study period, although transcript levels of GbIDS1s were similar both in roots and leaves of cultured G. biloba embryo, the transcripts of GbIDS2 predominantly occurred in the embryo roots, where diterpene ginkgolides are biosynthesized. Levels of PtIDS2 transcripts in the diterpenoid resin-producing wood were 4-5 times higher than those in other tissues. Higher levels of GbIDS1 transcripts were induced by light, whereas those of GbIDS2 were increased by methyl jasmonate treatment. These results strongly imply GbIDS2 and PtIDS2 have high correlation with secondary metabolism. In Arabidopsis transient expression system, N-terminal 100 amino acid residues of GbIDS1 delivered fused GFP protein into chloroplast as well as cytosol and nucleus, whereas those of GbIDS2, GbIDS2-1, and two PtIDSs delivered GFP only into chloroplast.</description><subject>1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS)</subject><subject>Agriculture</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Complementary DNA</subject><subject>Diphosphates</subject><subject>E coli</subject><subject>Ecology</subject><subject>Embryos</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Plant - radiation effects</subject><subject>Genes</subject><subject>Genes, Plant - genetics</subject><subject>Ginkgo biloba</subject><subject>Ginkgo biloba - enzymology</subject><subject>Ginkgo biloba - genetics</subject><subject>Ginkgo biloba - radiation effects</subject><subject>Ginkgolide</subject><subject>Gymnosperms</subject><subject>Isoprenoid</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Metabolism</subject><subject>Molecular Sequence Data</subject><subject>Nitrogen metabolism</subject><subject>Nonmevalonate pathway (MEP pathway)</subject><subject>Original Article</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - genetics</subject><subject>Phylogeny</subject><subject>Pine trees</subject><subject>Pinus taeda</subject><subject>Pinus taeda - enzymology</subject><subject>Pinus taeda - genetics</subject><subject>Pinus taeda - radiation effects</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Plants</subject><subject>Plasmids</subject><subject>RNA, Plant - genetics</subject><subject>RNA, Plant - metabolism</subject><subject>Roots</subject><subject>Terpenoids</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhiMEoqXwABwACwnUHgxjO46TIyqlrVQJpNJzZMeT3SyJvbUTafMIvDVeZcVKHDh5pPn-f8bzZ9lrBp8YgPocAXIuaSopFKyguyfZKcsFpxzy8ml2CpBqqIQ8yV7EuAFITaWeZydMqUKUhTrNfjN6M9vgdzPldMBxPfepOL-6oGYa0c09yanttmsft2s9Iglop2bUEcn57df7C9JFgq7xFi0xMxmmfuwav53JCh1G0jmymgeXxBiGSK4792vliel6bzTRzpIfnZsiGTVa_TJ71uo-4qvDe5Y9fLv6eXlD775f315-uaONZGykLRSFLAxL34KmZTw3hWkUlwZaCUxoLLkUWhlVWmxQYsG0NbmqwEolWluIs-zj4rsN_nHCONZDFxvse-3QT7FWAGU6j0rg-3_AjZ-CS7vVHKCqmCr3bmyBmuBjDNjW29ANOsw1g3ofUr2EVO_LfUj1LmneHownM6A9Kg6pJODDAdCx0X0btGu6eOSqSpZKyMTxhYup5VYYjhv-b_qbRbSJow9_TbkQZbUMf7f0W-1rvQpp8MM9T6dNdxGcV5X4A192vAM</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Kim, Sang-Min</creator><creator>Kuzuyama, Tomohisa</creator><creator>Kobayashi, Akio</creator><creator>Sando, Tomoki</creator><creator>Chang, Yung-Jin</creator><creator>Kim, Soo-Un</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS) is encoded by multicopy genes in gymnosperms Ginkgo biloba and Pinus taeda</title><author>Kim, Sang-Min ; Kuzuyama, Tomohisa ; Kobayashi, Akio ; Sando, Tomoki ; Chang, Yung-Jin ; Kim, Soo-Un</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-f06656b10930cf124b6bc725b0f5013ae8253a7b78dece5e61adb4790d573fd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS)</topic><topic>Agriculture</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Complementary DNA</topic><topic>Diphosphates</topic><topic>E coli</topic><topic>Ecology</topic><topic>Embryos</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Plant - radiation effects</topic><topic>Genes</topic><topic>Genes, Plant - genetics</topic><topic>Ginkgo biloba</topic><topic>Ginkgo biloba - enzymology</topic><topic>Ginkgo biloba - genetics</topic><topic>Ginkgo biloba - radiation effects</topic><topic>Ginkgolide</topic><topic>Gymnosperms</topic><topic>Isoprenoid</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Metabolism</topic><topic>Molecular Sequence Data</topic><topic>Nitrogen metabolism</topic><topic>Nonmevalonate pathway (MEP pathway)</topic><topic>Original Article</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - genetics</topic><topic>Phylogeny</topic><topic>Pine trees</topic><topic>Pinus taeda</topic><topic>Pinus taeda - enzymology</topic><topic>Pinus taeda - genetics</topic><topic>Pinus taeda - radiation effects</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Plants</topic><topic>Plasmids</topic><topic>RNA, Plant - genetics</topic><topic>RNA, Plant - metabolism</topic><topic>Roots</topic><topic>Terpenoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sang-Min</creatorcontrib><creatorcontrib>Kuzuyama, Tomohisa</creatorcontrib><creatorcontrib>Kobayashi, Akio</creatorcontrib><creatorcontrib>Sando, Tomoki</creatorcontrib><creatorcontrib>Chang, Yung-Jin</creatorcontrib><creatorcontrib>Kim, Soo-Un</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sang-Min</au><au>Kuzuyama, Tomohisa</au><au>Kobayashi, Akio</au><au>Sando, Tomoki</au><au>Chang, Yung-Jin</au><au>Kim, Soo-Un</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS) is encoded by multicopy genes in gymnosperms Ginkgo biloba and Pinus taeda</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>227</volume><issue>2</issue><spage>287</spage><epage>298</epage><pages>287-298</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>Isoprenoids are synthesized through the condensation of five-carbon intermediates, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), derived from two distinct biosynthetic routes: cytosolic mevalonate (MVA) and plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathways. 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS; EC 1.17.1.2), which catalyzes the last step of MEP pathway, was cloned as a multicopy gene from gymnosperms Ginkgo biloba (GbIDS1, GbIDS2, and GbIDS2-1) and Pinus taeda (PtIDS1 and PtIDS2), and characterized. Phylogenetic tree constructed with other plant IDSs demonstrated gymnosperm IDSs were distinctively different from angiosperm IDSs. The gymnosperm IDS clade contained two subclades, one composed of GbIDS1 and PtIDS1, and the other composed of GbIDS2, GbIDS2-1, and PtIDS2. G. biloba IDSs, except GbIDS2-1, successfully complemented Escherichia coli DLYT1, a lytB disruptant, confirming the in vivo competency of isozymes. During the 4 weeks study period, although transcript levels of GbIDS1s were similar both in roots and leaves of cultured G. biloba embryo, the transcripts of GbIDS2 predominantly occurred in the embryo roots, where diterpene ginkgolides are biosynthesized. Levels of PtIDS2 transcripts in the diterpenoid resin-producing wood were 4-5 times higher than those in other tissues. Higher levels of GbIDS1 transcripts were induced by light, whereas those of GbIDS2 were increased by methyl jasmonate treatment. These results strongly imply GbIDS2 and PtIDS2 have high correlation with secondary metabolism. In Arabidopsis transient expression system, N-terminal 100 amino acid residues of GbIDS1 delivered fused GFP protein into chloroplast as well as cytosol and nucleus, whereas those of GbIDS2, GbIDS2-1, and two PtIDSs delivered GFP only into chloroplast.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>17763867</pmid><doi>10.1007/s00425-007-0616-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2008-01, Vol.227 (2), p.287-298
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_70087767
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Springer Link
subjects 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS)
Agriculture
Amino Acid Sequence
Amino acids
Biological and medical sciences
Biomedical and Life Sciences
Biosynthesis
Complementary DNA
Diphosphates
E coli
Ecology
Embryos
Forestry
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling
Gene Expression Regulation, Plant - radiation effects
Genes
Genes, Plant - genetics
Ginkgo biloba
Ginkgo biloba - enzymology
Ginkgo biloba - genetics
Ginkgo biloba - radiation effects
Ginkgolide
Gymnosperms
Isoprenoid
Life Sciences
Light
Metabolism
Molecular Sequence Data
Nitrogen metabolism
Nonmevalonate pathway (MEP pathway)
Original Article
Oxidoreductases - chemistry
Oxidoreductases - genetics
Phylogeny
Pine trees
Pinus taeda
Pinus taeda - enzymology
Pinus taeda - genetics
Pinus taeda - radiation effects
Plant physiology and development
Plant Proteins - chemistry
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Sciences
Plants
Plasmids
RNA, Plant - genetics
RNA, Plant - metabolism
Roots
Terpenoids
title 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS) is encoded by multicopy genes in gymnosperms Ginkgo biloba and Pinus taeda
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1-Hydroxy-2-methyl-2-(E)-butenyl%204-diphosphate%20reductase%20(IDS)%20is%20encoded%20by%20multicopy%20genes%20in%20gymnosperms%20Ginkgo%20biloba%20and%20Pinus%20taeda&rft.jtitle=Planta&rft.au=Kim,%20Sang-Min&rft.date=2008-01-01&rft.volume=227&rft.issue=2&rft.spage=287&rft.epage=298&rft.pages=287-298&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-007-0616-x&rft_dat=%3Cjstor_proqu%3E23389867%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-f06656b10930cf124b6bc725b0f5013ae8253a7b78dece5e61adb4790d573fd63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200991786&rft_id=info:pmid/17763867&rft_jstor_id=23389867&rfr_iscdi=true