Loading…
Adhesion and viability of waterborne pathogens on p-DADMAC coatings
The attachment of waterborne pathogens onto surfaces can be increased by coating the surfaces with positive charge-enhancing polymers. In this paper, the increased efficacy of polydiallyldimethylammonium chloride (p-DADMAC) coatings on glass was evaluated in a parallel plate flow chamber with the us...
Saved in:
Published in: | Biotechnology and bioengineering 2008, Vol.99 (1), p.165-169 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The attachment of waterborne pathogens onto surfaces can be increased by coating the surfaces with positive charge-enhancing polymers. In this paper, the increased efficacy of polydiallyldimethylammonium chloride (p-DADMAC) coatings on glass was evaluated in a parallel plate flow chamber with the use of waterborne pathogens (Raoultella terrigena, Escherichia coli, and Brevundimonas diminuta). p-DADMAC coatings strongly compensated the highly negative charges on the glass surface and even yielded a positively charged surface when applied from a 500 ppm solution. Whereas none of the strains adhered from water to glass due to electrostatic repulsion, R. terrigena and E. coli readily adhered in high numbers to p-DADMAC coated glass slides applied from 1, 100, or 500 ppm aqueous solutions. B. diminuta only adhered to a positively charged p-DADMAC coating applied from a 500 ppm solution. In addition, all p-DADMAC coatings indicated strong contact killing with the bacterial species used in this study by live/dead staining techniques. In summary, this paper demonstrates the potential of p-DADMAC coatings to strongly enhance bacterial adhesion. Moreover, once adhered, bacterial viability can be reduced by the positively charged ammonium groups in the coating. Biotechnol. Bioeng. 2008;99: 165-169. © 2007 Wiley Periodicals, Inc. |
---|---|
ISSN: | 0006-3592 1097-0290 |
DOI: | 10.1002/bit.21538 |