Loading…

Origin, fate and significance of CO₂ in tree stems

Although some CO2 released by respiring cells in tree stems diffuses directly to the atmosphere, on a daily basis 15-55% can remain within the tree. High concentrations of CO2 build up in stems because of barriers to diffusion in the inner bark and xylem. In contrast with atmospheric [CO2] of c. 0.0...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2008-01, Vol.177 (1), p.17-32
Main Authors: Teskey, Robert O, Saveyn, An, Steppe, Kathy, McGuire, Mary Anne
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although some CO2 released by respiring cells in tree stems diffuses directly to the atmosphere, on a daily basis 15-55% can remain within the tree. High concentrations of CO2 build up in stems because of barriers to diffusion in the inner bark and xylem. In contrast with atmospheric [CO2] of c. 0.04%, the [CO2] in tree stems is often between 3 and 10%, and sometimes exceeds 20%. The [CO2] in stems varies diurnally and seasonally. Some respired CO2 remaining in the stem dissolves in xylem sap and is transported toward the leaves. A portion can be fixed by photosynthetic cells in woody tissues, and a portion diffuses out of the stem into the atmosphere remote from the site of origin. It is now evident that measurements of CO2 efflux to the atmosphere, which have been commonly used to estimate the rate of woody tissue respiration, do not adequately account for the internal fluxes of CO2. New approaches to quantify both internal and external fluxes of CO2 have been developed to estimate the rate of woody tissue respiration. A more complete assessment of internal fluxes of CO2 in stems will improve our understanding of the carbon balance of trees.
ISSN:0028-646X
1469-8137
DOI:10.1111/j.1469-8137.2007.02286.x