Loading…

In vivo differentiation and genomic evolution in adult male germ cell tumors

Germ cell tumors (GCTs) are the most common solid malignancy in young adult men, but the genes and genomic regions involved in their etiology are not fully defined. We report here an investigation of DNA copy number changes in GCTs using 1 Mb BAC arrays. As expected, 12p gain was the defining genomi...

Full description

Saved in:
Bibliographic Details
Published in:Genes chromosomes & cancer 2008-01, Vol.47 (1), p.43-55
Main Authors: Korkola, J. E., Heck, S., Olshen, A. B., Reuter, V. E., Bosl, G. J., Houldsworth, J., Chaganti, R. S. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4274-164d85127c3b2208800ef5eea15581259e11b01cb00f35984b042205d7d1213e3
cites cdi_FETCH-LOGICAL-c4274-164d85127c3b2208800ef5eea15581259e11b01cb00f35984b042205d7d1213e3
container_end_page 55
container_issue 1
container_start_page 43
container_title Genes chromosomes & cancer
container_volume 47
creator Korkola, J. E.
Heck, S.
Olshen, A. B.
Reuter, V. E.
Bosl, G. J.
Houldsworth, J.
Chaganti, R. S. K.
description Germ cell tumors (GCTs) are the most common solid malignancy in young adult men, but the genes and genomic regions involved in their etiology are not fully defined. We report here an investigation of DNA copy number changes in GCTs using 1 Mb BAC arrays. As expected, 12p gain was the defining genomic alteration, occurring in 72/74 GCTs. Parallel expression profiling of these tumors identified potential oncogenes from gained regions (LYN and RAB25) and potential tumor suppressor genes in regions of loss (SYNPO2, TTC12, IGSF4, and EPB41L3). Notably, we observed specific genomic alterations associated with histology, including gain of 17p11.2‐q21.32 and loss of 2p25.3 in embryonal carcinoma, gain of 8p23.3‐12 and loss of 5p15.33‐35.3, 11q23.1‐25, and 13q12.11‐34 in seminoma, and gain of 1q31.3‐42.3, 3p, 14q11.2‐32.33, and 20q and loss of 8q11.1‐23.1 in yolk sac tumors (YST). Many significant genes that mapped to these regions had previously been associated with specific histologies, such as EOMES (chr3) and BMP2 (chr20) in YST and SPRY2 (chr13) and SOX17 (chr8) in seminomas. Additionally, our results suggest a model in which histologic differentiation of GCTs may drive genomic evolution. © 2007 Wiley‐Liss, Inc.
doi_str_mv 10.1002/gcc.20504
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70107364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70107364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4274-164d85127c3b2208800ef5eea15581259e11b01cb00f35984b042205d7d1213e3</originalsourceid><addsrcrecordid>eNqFkMlOw0AQREcIxH7gB5BPSByc9Gwe-wgWhEgRmwIcR17aaMBLmLED-XscEuCEOHWp63WpVYQcURhQADZ8zrIBAwlig-xSiEKfsUBsLrWQvZZqh-w59wIAAY_kNtmhKhI8UmyXTMa1NzfzxstNUaDFujVJa5raS-rce8a6qUzm4bwpu6-t6Y28K1uvSkrsfVt5GZal13ZVY90B2SqS0uHheu6Th8uLaXzlT25G4_hs4meCKeHTQOShpExlPGUMwhAAC4mYUClDymSElKZAsxSg4DIKRQqi52SucsooR75PTla5M9u8dehaXRm3_COpsemcVkBB8UD8CzIQgYiU6sHTFZjZxjmLhZ5ZUyV2oSnoZce671h_ddyzx-vQLq0w_yXXpfbAcAW8mxIXfyfpURx_R_qrC-Na_Pi5SOyrDhRXUj9dj_T53TS-vYdHLfgntFeSsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20464977</pqid></control><display><type>article</type><title>In vivo differentiation and genomic evolution in adult male germ cell tumors</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Korkola, J. E. ; Heck, S. ; Olshen, A. B. ; Reuter, V. E. ; Bosl, G. J. ; Houldsworth, J. ; Chaganti, R. S. K.</creator><creatorcontrib>Korkola, J. E. ; Heck, S. ; Olshen, A. B. ; Reuter, V. E. ; Bosl, G. J. ; Houldsworth, J. ; Chaganti, R. S. K.</creatorcontrib><description>Germ cell tumors (GCTs) are the most common solid malignancy in young adult men, but the genes and genomic regions involved in their etiology are not fully defined. We report here an investigation of DNA copy number changes in GCTs using 1 Mb BAC arrays. As expected, 12p gain was the defining genomic alteration, occurring in 72/74 GCTs. Parallel expression profiling of these tumors identified potential oncogenes from gained regions (LYN and RAB25) and potential tumor suppressor genes in regions of loss (SYNPO2, TTC12, IGSF4, and EPB41L3). Notably, we observed specific genomic alterations associated with histology, including gain of 17p11.2‐q21.32 and loss of 2p25.3 in embryonal carcinoma, gain of 8p23.3‐12 and loss of 5p15.33‐35.3, 11q23.1‐25, and 13q12.11‐34 in seminoma, and gain of 1q31.3‐42.3, 3p, 14q11.2‐32.33, and 20q and loss of 8q11.1‐23.1 in yolk sac tumors (YST). Many significant genes that mapped to these regions had previously been associated with specific histologies, such as EOMES (chr3) and BMP2 (chr20) in YST and SPRY2 (chr13) and SOX17 (chr8) in seminomas. Additionally, our results suggest a model in which histologic differentiation of GCTs may drive genomic evolution. © 2007 Wiley‐Liss, Inc.</description><identifier>ISSN: 1045-2257</identifier><identifier>EISSN: 1098-2264</identifier><identifier>DOI: 10.1002/gcc.20504</identifier><identifier>PMID: 17943972</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adult ; Cell Differentiation - genetics ; Chromosomes, Artificial, Bacterial ; Evolution, Molecular ; Female ; Gene Dosage ; Gene Expression Profiling ; Genome, Human ; Germinoma - genetics ; Humans ; Male ; Nucleic Acid Hybridization ; Oligonucleotide Array Sequence Analysis ; Testicular Neoplasms - genetics</subject><ispartof>Genes chromosomes &amp; cancer, 2008-01, Vol.47 (1), p.43-55</ispartof><rights>Copyright © 2007 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4274-164d85127c3b2208800ef5eea15581259e11b01cb00f35984b042205d7d1213e3</citedby><cites>FETCH-LOGICAL-c4274-164d85127c3b2208800ef5eea15581259e11b01cb00f35984b042205d7d1213e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17943972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Korkola, J. E.</creatorcontrib><creatorcontrib>Heck, S.</creatorcontrib><creatorcontrib>Olshen, A. B.</creatorcontrib><creatorcontrib>Reuter, V. E.</creatorcontrib><creatorcontrib>Bosl, G. J.</creatorcontrib><creatorcontrib>Houldsworth, J.</creatorcontrib><creatorcontrib>Chaganti, R. S. K.</creatorcontrib><title>In vivo differentiation and genomic evolution in adult male germ cell tumors</title><title>Genes chromosomes &amp; cancer</title><addtitle>Genes Chromosom. Cancer</addtitle><description>Germ cell tumors (GCTs) are the most common solid malignancy in young adult men, but the genes and genomic regions involved in their etiology are not fully defined. We report here an investigation of DNA copy number changes in GCTs using 1 Mb BAC arrays. As expected, 12p gain was the defining genomic alteration, occurring in 72/74 GCTs. Parallel expression profiling of these tumors identified potential oncogenes from gained regions (LYN and RAB25) and potential tumor suppressor genes in regions of loss (SYNPO2, TTC12, IGSF4, and EPB41L3). Notably, we observed specific genomic alterations associated with histology, including gain of 17p11.2‐q21.32 and loss of 2p25.3 in embryonal carcinoma, gain of 8p23.3‐12 and loss of 5p15.33‐35.3, 11q23.1‐25, and 13q12.11‐34 in seminoma, and gain of 1q31.3‐42.3, 3p, 14q11.2‐32.33, and 20q and loss of 8q11.1‐23.1 in yolk sac tumors (YST). Many significant genes that mapped to these regions had previously been associated with specific histologies, such as EOMES (chr3) and BMP2 (chr20) in YST and SPRY2 (chr13) and SOX17 (chr8) in seminomas. Additionally, our results suggest a model in which histologic differentiation of GCTs may drive genomic evolution. © 2007 Wiley‐Liss, Inc.</description><subject>Adult</subject><subject>Cell Differentiation - genetics</subject><subject>Chromosomes, Artificial, Bacterial</subject><subject>Evolution, Molecular</subject><subject>Female</subject><subject>Gene Dosage</subject><subject>Gene Expression Profiling</subject><subject>Genome, Human</subject><subject>Germinoma - genetics</subject><subject>Humans</subject><subject>Male</subject><subject>Nucleic Acid Hybridization</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Testicular Neoplasms - genetics</subject><issn>1045-2257</issn><issn>1098-2264</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMlOw0AQREcIxH7gB5BPSByc9Gwe-wgWhEgRmwIcR17aaMBLmLED-XscEuCEOHWp63WpVYQcURhQADZ8zrIBAwlig-xSiEKfsUBsLrWQvZZqh-w59wIAAY_kNtmhKhI8UmyXTMa1NzfzxstNUaDFujVJa5raS-rce8a6qUzm4bwpu6-t6Y28K1uvSkrsfVt5GZal13ZVY90B2SqS0uHheu6Th8uLaXzlT25G4_hs4meCKeHTQOShpExlPGUMwhAAC4mYUClDymSElKZAsxSg4DIKRQqi52SucsooR75PTla5M9u8dehaXRm3_COpsemcVkBB8UD8CzIQgYiU6sHTFZjZxjmLhZ5ZUyV2oSnoZce671h_ddyzx-vQLq0w_yXXpfbAcAW8mxIXfyfpURx_R_qrC-Na_Pi5SOyrDhRXUj9dj_T53TS-vYdHLfgntFeSsg</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Korkola, J. E.</creator><creator>Heck, S.</creator><creator>Olshen, A. B.</creator><creator>Reuter, V. E.</creator><creator>Bosl, G. J.</creator><creator>Houldsworth, J.</creator><creator>Chaganti, R. S. K.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200801</creationdate><title>In vivo differentiation and genomic evolution in adult male germ cell tumors</title><author>Korkola, J. E. ; Heck, S. ; Olshen, A. B. ; Reuter, V. E. ; Bosl, G. J. ; Houldsworth, J. ; Chaganti, R. S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4274-164d85127c3b2208800ef5eea15581259e11b01cb00f35984b042205d7d1213e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adult</topic><topic>Cell Differentiation - genetics</topic><topic>Chromosomes, Artificial, Bacterial</topic><topic>Evolution, Molecular</topic><topic>Female</topic><topic>Gene Dosage</topic><topic>Gene Expression Profiling</topic><topic>Genome, Human</topic><topic>Germinoma - genetics</topic><topic>Humans</topic><topic>Male</topic><topic>Nucleic Acid Hybridization</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Testicular Neoplasms - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korkola, J. E.</creatorcontrib><creatorcontrib>Heck, S.</creatorcontrib><creatorcontrib>Olshen, A. B.</creatorcontrib><creatorcontrib>Reuter, V. E.</creatorcontrib><creatorcontrib>Bosl, G. J.</creatorcontrib><creatorcontrib>Houldsworth, J.</creatorcontrib><creatorcontrib>Chaganti, R. S. K.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genes chromosomes &amp; cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korkola, J. E.</au><au>Heck, S.</au><au>Olshen, A. B.</au><au>Reuter, V. E.</au><au>Bosl, G. J.</au><au>Houldsworth, J.</au><au>Chaganti, R. S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo differentiation and genomic evolution in adult male germ cell tumors</atitle><jtitle>Genes chromosomes &amp; cancer</jtitle><addtitle>Genes Chromosom. Cancer</addtitle><date>2008-01</date><risdate>2008</risdate><volume>47</volume><issue>1</issue><spage>43</spage><epage>55</epage><pages>43-55</pages><issn>1045-2257</issn><eissn>1098-2264</eissn><abstract>Germ cell tumors (GCTs) are the most common solid malignancy in young adult men, but the genes and genomic regions involved in their etiology are not fully defined. We report here an investigation of DNA copy number changes in GCTs using 1 Mb BAC arrays. As expected, 12p gain was the defining genomic alteration, occurring in 72/74 GCTs. Parallel expression profiling of these tumors identified potential oncogenes from gained regions (LYN and RAB25) and potential tumor suppressor genes in regions of loss (SYNPO2, TTC12, IGSF4, and EPB41L3). Notably, we observed specific genomic alterations associated with histology, including gain of 17p11.2‐q21.32 and loss of 2p25.3 in embryonal carcinoma, gain of 8p23.3‐12 and loss of 5p15.33‐35.3, 11q23.1‐25, and 13q12.11‐34 in seminoma, and gain of 1q31.3‐42.3, 3p, 14q11.2‐32.33, and 20q and loss of 8q11.1‐23.1 in yolk sac tumors (YST). Many significant genes that mapped to these regions had previously been associated with specific histologies, such as EOMES (chr3) and BMP2 (chr20) in YST and SPRY2 (chr13) and SOX17 (chr8) in seminomas. Additionally, our results suggest a model in which histologic differentiation of GCTs may drive genomic evolution. © 2007 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17943972</pmid><doi>10.1002/gcc.20504</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1045-2257
ispartof Genes chromosomes & cancer, 2008-01, Vol.47 (1), p.43-55
issn 1045-2257
1098-2264
language eng
recordid cdi_proquest_miscellaneous_70107364
source Wiley-Blackwell Read & Publish Collection
subjects Adult
Cell Differentiation - genetics
Chromosomes, Artificial, Bacterial
Evolution, Molecular
Female
Gene Dosage
Gene Expression Profiling
Genome, Human
Germinoma - genetics
Humans
Male
Nucleic Acid Hybridization
Oligonucleotide Array Sequence Analysis
Testicular Neoplasms - genetics
title In vivo differentiation and genomic evolution in adult male germ cell tumors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A25%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20differentiation%20and%20genomic%20evolution%20in%20adult%20male%20germ%20cell%20tumors&rft.jtitle=Genes%20chromosomes%20&%20cancer&rft.au=Korkola,%20J.%20E.&rft.date=2008-01&rft.volume=47&rft.issue=1&rft.spage=43&rft.epage=55&rft.pages=43-55&rft.issn=1045-2257&rft.eissn=1098-2264&rft_id=info:doi/10.1002/gcc.20504&rft_dat=%3Cproquest_cross%3E70107364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4274-164d85127c3b2208800ef5eea15581259e11b01cb00f35984b042205d7d1213e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20464977&rft_id=info:pmid/17943972&rfr_iscdi=true