Loading…
Structural Assignment of Permethylated Oligosaccharide Subunits Using Sequential Tandem Mass Spectrometry
The sequential tandem mass spectrometry (MS n ) capabilities offered by quadrupole ion trap instruments have been explored in a systematic study of permethylated oligosaccharides. Under collision-induced dissociation, protonated molecular species generated in the electrospray ionization mode yield s...
Saved in:
Published in: | Analytical chemistry (Washington) 1998-12, Vol.70 (23), p.4951-4959 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The sequential tandem mass spectrometry (MS n ) capabilities offered by quadrupole ion trap instruments have been explored in a systematic study of permethylated oligosaccharides. Under collision-induced dissociation, protonated molecular species generated in the electrospray ionization mode yield simple and predictable mass spectra. Information on sequence, branching, and, to some extent, interglycosidic linkages can be deduced from fragments resulting from the cleavage of glycosidic bonds. Simple rules for the structural assignment of carbohydrates have been established for the fragmentation of protonated species and subunits thereof and corroborated by 18O-labeling experiments. Moreover, sequential tandem mass spectrometry was demonstrated to allow the straightforward structural characterization of unknown carbohydrate moieties by comparing their CID spectra with those of a set of references. As the collision-induced dissociation patterns are not dependent on the number of prior tandem mass spectrometric steps, structures can be unambiguously assigned by match of the spectra. These findings establish the basis of MS n performed on a quadrupole ion trap instrument for elucidating structures of large carbohydrates, which can be virtually degraded in the mass spectrometer into smaller entities in one or several steps. This powerful technique has been applied, used in conjunction with specific CD3 labeling, to the characterization of series of subunits generated from fucosylated and sialylated oligosaccharides, which are among the most important structures as far as biological activities are concerned. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac980443+ |