Loading…

Evolution of Resistance to Transgenic Crops: Interactions Between Insect Movement and Field Distribution

The refuge strategy is designed to delay evolution of pest resistance to transgenic crops producing Bacillus thuringiensis Berliner (Bt) toxins. Movement of insects between Bt crops and refuges of non-Bt crops is essential for the refuge strategy because it increases chances that resistant adults ma...

Full description

Saved in:
Bibliographic Details
Published in:Journal of economic entomology 2005-12, Vol.98 (6), p.1751-1762
Main Authors: Sisterson, Mark S., Carrière, Yves, Dennehy, Timothy J., Tabashnik, Bruce E.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The refuge strategy is designed to delay evolution of pest resistance to transgenic crops producing Bacillus thuringiensis Berliner (Bt) toxins. Movement of insects between Bt crops and refuges of non-Bt crops is essential for the refuge strategy because it increases chances that resistant adults mate with susceptible adults from refuges. Conclusions about optimal levels of movement for delaying resistance are not consistent among previous modeling studies. To clarify the effects of movement on resistance evolution, we analyzed simulations of a spatially explicit model based partly on the interaction of pink bollworm, Pectinophora gossypiella (Saunders), with Bt cotton. We examined resistance evolution as a function of insect movement under 12 sets of assumptions about the relative abundance of Bt cotton (50 and 75%), temporal distribution of Bt cotton and refuge fields (fixed, partial rotation, and full rotation), and spatial distribution of fields (random and uniform). The results show that interactions among the relative abundance and distribution of refuges and Bt cotton fields can alter the effects of movement on resistance evolution. The results also suggest that differences in conclusions among previous studies can be explained by differences in assumptions about the relative abundance and distribution of refuges and Bt crop fields. With fixed field locations and all Bt cotton fields adjacent to at least one refuge, resistance evolved slowest with low movement. However, low movement and fixed field locations favored rapid resistance evolution when some Bt crop fields were isolated from refuges. When refuges and Bt cotton fields were rotated to the opposite crop type each year, resistance evolved fastest with low movement. Nonrecessive inheritance of resistance caused rapid resistance evolution regardless of movement rate. Confirming previous reports, results described here show that resistance can be delayed effectively by fixing field locations and distributing refuges uniformly to ensure that Bt crop fields are not isolated from refuges. However, rotating fields provided better insect control and reduced the need for insecticide sprays.
ISSN:0022-0493
1938-291X
DOI:10.1603/0022-0493-98.6.1751