Loading…

Rates of Homogeneous Ice Nucleation in Levitated H2O and D2O Droplets

Rates of homogeneous nucleation of H2O droplets in a temperature range from 236.37 to 237.91 K and of D2O droplets from 241.34 to 242.33 K were measured. The single microdroplets consisted of pure H2O or D2O and were levitated in an electrodynamic balance. In comparison to H2O, D2O shows a stronger...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2005-03, Vol.109 (11), p.2540-2546
Main Authors: Stöckel, Peter, Weidinger, Inez M, Baumgärtel, Helmut, Leisner, Thomas
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rates of homogeneous nucleation of H2O droplets in a temperature range from 236.37 to 237.91 K and of D2O droplets from 241.34 to 242.33 K were measured. The single microdroplets consisted of pure H2O or D2O and were levitated in an electrodynamic balance. In comparison to H2O, D2O shows a stronger tendency to nucleate. Over the investigated temperature interval, D2O droplets need to be supercooled less by 1.1 K compared to H2O droplets in order to arrive at the same nucleation rate. This is in good agreement with the higher degree of intermolecular association in liquid D2O, a fact which has been well established previously both from theory and experimental studies.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp047665y