Loading…

Stiffness and Raman Intensity:  a Conceptual and Computational DFT Study

A DFT-based reactivity descriptor, the nuclear stiffness, is related to the Raman scattering intensity, which is experimentally accessible. The application of this new relationship obtained within certain approximations has been checked in two different sets of molecules. First, we study a favorable...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2005-07, Vol.109 (27), p.6071-6076
Main Authors: Torrent-Sucarrat, Miquel, De Proft, Frank, Geerlings, Paul
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A DFT-based reactivity descriptor, the nuclear stiffness, is related to the Raman scattering intensity, which is experimentally accessible. The application of this new relationship obtained within certain approximations has been checked in two different sets of molecules. First, we study a favorable case, where the contribution of the anisotropy to the Raman intensity is zero (symmetric stretching mode in 15 tetrahedral molecules). Second, we consider a “worst” case scenario, where the anisotropy contribution can be expected to be important (stretching mode in 32 diatomic molecules). The numerical results clearly show a relationship between stiffness and Raman intensity reflecting the expected anisotropy influence.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp044150y