Loading…
Reduction of ascorbate free radical by the plasma membrane of synaptic terminals from rat brain
Synaptic plasma membranes (SPMV) decrease the steady state ascorbate free radical (AFR) concentration of 1 mM ascorbate in phosphate/EDTA buffer (pH 7), due to AFR recycling by redox coupling between ascorbate and the ubiquinone content of these membranes. In the presence of NADH, but not NADPH, SPM...
Saved in:
Published in: | Archives of biochemistry and biophysics 2008-01, Vol.469 (2), p.243-254 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Synaptic plasma membranes (SPMV) decrease the steady state ascorbate free radical (AFR) concentration of 1
mM ascorbate in phosphate/EDTA buffer (pH 7), due to AFR recycling by redox coupling between ascorbate and the ubiquinone content of these membranes. In the presence of NADH, but not NADPH, SPMV catalyse a rapid recycling of AFR which further lower the AFR concentration below 0.05
μM. These results correlate with the nearly 10-fold higher NADH oxidase over NADPH oxidase activity of SPMV. SPMV has NADH-dependent coenzyme Q reductase activity. In the presence of ascorbate the stimulation of the NADH oxidase activity of SPMV by coenzyme Q
1 and cytochrome
c can be accounted for by the increase of the AFR concentration generated by the redox pairs ascorbate/coenzyme Q
1 and ascorbate/cytochrome
c. The NADH:AFR reductase activity makes a major contribution to the NADH oxidase activity of SPMV and decreases the steady-state AFR concentration well below the micromolar concentration range. |
---|---|
ISSN: | 0003-9861 1096-0384 |
DOI: | 10.1016/j.abb.2007.10.004 |