Loading…
Optimization of scan parameters in pulmonary partial pressure oxygen measurement by hyperpolarized 3He MRI
The dependence of hyperpolarized (HP) 3He T1 on local oxygen concentration provides the basis for measuring the partial pressure of oxygen (pO2) and oxygen depletion rate (R) in the lungs. Precise measurements of this type are difficult because the oxygen effect manifests itself through a decay of s...
Saved in:
Published in: | Magnetic resonance in medicine 2008-01, Vol.59 (1), p.124-131 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 131 |
container_issue | 1 |
container_start_page | 124 |
container_title | Magnetic resonance in medicine |
container_volume | 59 |
creator | Yu, Jiangsheng Ishii, Masaru Law, Michelle Woodburn, John M. Emami, Kiarash Kadlecek, Stephen Vahdat, Vahid Guyer, Richard A. Rizi, Rahim R. |
description | The dependence of hyperpolarized (HP) 3He T1 on local oxygen concentration provides the basis for measuring the partial pressure of oxygen (pO2) and oxygen depletion rate (R) in the lungs. Precise measurements of this type are difficult because the oxygen effect manifests itself through a decay of signal, leading to noisy images at the end of the series. The depolarization caused by RF excitation pulses further complicates the problem. It is therefore important to optimize scan parameters, such as measurement timing and flip angle, to obtain accurate and reproducible measurements. This work presents a new single‐acquisition technique in conjunction with the multiple regression fitting method for data evaluation. Analytical expressions for the measurement uncertainties are derived. A total of four types of single‐acquisition timing schemes are investigated; simulation shows a large uncertainty variation between these schemes (pO2: 7.5–30.2%; R: 47.4–173.7%). A basic procedure for optimizing scan parameters is then described. A phantom experiment was conducted to verify the simulation results. Repeated in vivo measurements with the optimal scheme in a rabbit experiment showed that average variation of global mean is 6.2% for pO2 and 12.0% for R, and that the average variation of percentiles (10th, 25th, 50th, 75th, and 90th) is 8.7% for pO2 and 19.0% for R. Magn Reson Med, 2007. © 2007 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/mrm.21416 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_70173516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20856641</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1986-8fad7f9497eaf73a73e2c633b32e66fc823b0e3c7ee9731a63bbdc65ece060ba3</originalsourceid><addsrcrecordid>eNqFkc1O3DAUha2Kqgy0i75A5RW7wLWd2PESRnQAzRRp1KpLy8ncgGmcBDtRyTw9GQbKsqv79527OIeQrwxOGQA_88GfcpYy-YHMWMZ5wjOdHpAZqBQSwXR6SI5ifAAArVX6iRyyHDIQaT4jD7dd77zb2t61DW0rGkvb0M4G67HHEKmbpqH2bWPDuNv3zta0CxjjEJC2T-MdNtSj3Y0em54WI70fOwxdW9vgtrih4grpan39mXysbB3xy2s9Jr--X_6cXyXL28X1_HyZOKZzmeSV3ahKp1qhrZSwSiAvpRCF4ChlVeZcFICiVIhaCWalKIpNKTMsESQUVhyTk_3fLrSPA8beeBdLrGvbYDtEo4ApkTH5X5BDnkmZsgn89goOhceN6YLzkx3mzcYJONsDf12N4_sdzC4fM-VjXvIxq_XqpZkUyV7hYo9P_xQ2_DFSCZWZ3z8WRsLFzWKuM7MWz4Puk3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20856641</pqid></control><display><type>article</type><title>Optimization of scan parameters in pulmonary partial pressure oxygen measurement by hyperpolarized 3He MRI</title><source>Wiley</source><creator>Yu, Jiangsheng ; Ishii, Masaru ; Law, Michelle ; Woodburn, John M. ; Emami, Kiarash ; Kadlecek, Stephen ; Vahdat, Vahid ; Guyer, Richard A. ; Rizi, Rahim R.</creator><creatorcontrib>Yu, Jiangsheng ; Ishii, Masaru ; Law, Michelle ; Woodburn, John M. ; Emami, Kiarash ; Kadlecek, Stephen ; Vahdat, Vahid ; Guyer, Richard A. ; Rizi, Rahim R.</creatorcontrib><description>The dependence of hyperpolarized (HP) 3He T1 on local oxygen concentration provides the basis for measuring the partial pressure of oxygen (pO2) and oxygen depletion rate (R) in the lungs. Precise measurements of this type are difficult because the oxygen effect manifests itself through a decay of signal, leading to noisy images at the end of the series. The depolarization caused by RF excitation pulses further complicates the problem. It is therefore important to optimize scan parameters, such as measurement timing and flip angle, to obtain accurate and reproducible measurements. This work presents a new single‐acquisition technique in conjunction with the multiple regression fitting method for data evaluation. Analytical expressions for the measurement uncertainties are derived. A total of four types of single‐acquisition timing schemes are investigated; simulation shows a large uncertainty variation between these schemes (pO2: 7.5–30.2%; R: 47.4–173.7%). A basic procedure for optimizing scan parameters is then described. A phantom experiment was conducted to verify the simulation results. Repeated in vivo measurements with the optimal scheme in a rabbit experiment showed that average variation of global mean is 6.2% for pO2 and 12.0% for R, and that the average variation of percentiles (10th, 25th, 50th, 75th, and 90th) is 8.7% for pO2 and 19.0% for R. Magn Reson Med, 2007. © 2007 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.21416</identifier><identifier>PMID: 18050348</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Helium ; hyperpolarized helium-3 MRI ; Isotopes ; Lung - physiology ; Magnetic Resonance Imaging - methods ; measurement uncertainty ; multiple regression fitting method ; Partial Pressure ; partial pressure oxygen and oxygen depletion rate ; Phantoms, Imaging ; Rabbits ; Regression Analysis ; reproducibility</subject><ispartof>Magnetic resonance in medicine, 2008-01, Vol.59 (1), p.124-131</ispartof><rights>Copyright © 2007 Wiley‐Liss, Inc.</rights><rights>2007 Wiley-Liss, Inc</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18050348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Jiangsheng</creatorcontrib><creatorcontrib>Ishii, Masaru</creatorcontrib><creatorcontrib>Law, Michelle</creatorcontrib><creatorcontrib>Woodburn, John M.</creatorcontrib><creatorcontrib>Emami, Kiarash</creatorcontrib><creatorcontrib>Kadlecek, Stephen</creatorcontrib><creatorcontrib>Vahdat, Vahid</creatorcontrib><creatorcontrib>Guyer, Richard A.</creatorcontrib><creatorcontrib>Rizi, Rahim R.</creatorcontrib><title>Optimization of scan parameters in pulmonary partial pressure oxygen measurement by hyperpolarized 3He MRI</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>The dependence of hyperpolarized (HP) 3He T1 on local oxygen concentration provides the basis for measuring the partial pressure of oxygen (pO2) and oxygen depletion rate (R) in the lungs. Precise measurements of this type are difficult because the oxygen effect manifests itself through a decay of signal, leading to noisy images at the end of the series. The depolarization caused by RF excitation pulses further complicates the problem. It is therefore important to optimize scan parameters, such as measurement timing and flip angle, to obtain accurate and reproducible measurements. This work presents a new single‐acquisition technique in conjunction with the multiple regression fitting method for data evaluation. Analytical expressions for the measurement uncertainties are derived. A total of four types of single‐acquisition timing schemes are investigated; simulation shows a large uncertainty variation between these schemes (pO2: 7.5–30.2%; R: 47.4–173.7%). A basic procedure for optimizing scan parameters is then described. A phantom experiment was conducted to verify the simulation results. Repeated in vivo measurements with the optimal scheme in a rabbit experiment showed that average variation of global mean is 6.2% for pO2 and 12.0% for R, and that the average variation of percentiles (10th, 25th, 50th, 75th, and 90th) is 8.7% for pO2 and 19.0% for R. Magn Reson Med, 2007. © 2007 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Helium</subject><subject>hyperpolarized helium-3 MRI</subject><subject>Isotopes</subject><subject>Lung - physiology</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>measurement uncertainty</subject><subject>multiple regression fitting method</subject><subject>Partial Pressure</subject><subject>partial pressure oxygen and oxygen depletion rate</subject><subject>Phantoms, Imaging</subject><subject>Rabbits</subject><subject>Regression Analysis</subject><subject>reproducibility</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkc1O3DAUha2Kqgy0i75A5RW7wLWd2PESRnQAzRRp1KpLy8ncgGmcBDtRyTw9GQbKsqv79527OIeQrwxOGQA_88GfcpYy-YHMWMZ5wjOdHpAZqBQSwXR6SI5ifAAArVX6iRyyHDIQaT4jD7dd77zb2t61DW0rGkvb0M4G67HHEKmbpqH2bWPDuNv3zta0CxjjEJC2T-MdNtSj3Y0em54WI70fOwxdW9vgtrih4grpan39mXysbB3xy2s9Jr--X_6cXyXL28X1_HyZOKZzmeSV3ahKp1qhrZSwSiAvpRCF4ChlVeZcFICiVIhaCWalKIpNKTMsESQUVhyTk_3fLrSPA8beeBdLrGvbYDtEo4ApkTH5X5BDnkmZsgn89goOhceN6YLzkx3mzcYJONsDf12N4_sdzC4fM-VjXvIxq_XqpZkUyV7hYo9P_xQ2_DFSCZWZ3z8WRsLFzWKuM7MWz4Puk3Y</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Yu, Jiangsheng</creator><creator>Ishii, Masaru</creator><creator>Law, Michelle</creator><creator>Woodburn, John M.</creator><creator>Emami, Kiarash</creator><creator>Kadlecek, Stephen</creator><creator>Vahdat, Vahid</creator><creator>Guyer, Richard A.</creator><creator>Rizi, Rahim R.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200801</creationdate><title>Optimization of scan parameters in pulmonary partial pressure oxygen measurement by hyperpolarized 3He MRI</title><author>Yu, Jiangsheng ; Ishii, Masaru ; Law, Michelle ; Woodburn, John M. ; Emami, Kiarash ; Kadlecek, Stephen ; Vahdat, Vahid ; Guyer, Richard A. ; Rizi, Rahim R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1986-8fad7f9497eaf73a73e2c633b32e66fc823b0e3c7ee9731a63bbdc65ece060ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Helium</topic><topic>hyperpolarized helium-3 MRI</topic><topic>Isotopes</topic><topic>Lung - physiology</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>measurement uncertainty</topic><topic>multiple regression fitting method</topic><topic>Partial Pressure</topic><topic>partial pressure oxygen and oxygen depletion rate</topic><topic>Phantoms, Imaging</topic><topic>Rabbits</topic><topic>Regression Analysis</topic><topic>reproducibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jiangsheng</creatorcontrib><creatorcontrib>Ishii, Masaru</creatorcontrib><creatorcontrib>Law, Michelle</creatorcontrib><creatorcontrib>Woodburn, John M.</creatorcontrib><creatorcontrib>Emami, Kiarash</creatorcontrib><creatorcontrib>Kadlecek, Stephen</creatorcontrib><creatorcontrib>Vahdat, Vahid</creatorcontrib><creatorcontrib>Guyer, Richard A.</creatorcontrib><creatorcontrib>Rizi, Rahim R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jiangsheng</au><au>Ishii, Masaru</au><au>Law, Michelle</au><au>Woodburn, John M.</au><au>Emami, Kiarash</au><au>Kadlecek, Stephen</au><au>Vahdat, Vahid</au><au>Guyer, Richard A.</au><au>Rizi, Rahim R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of scan parameters in pulmonary partial pressure oxygen measurement by hyperpolarized 3He MRI</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2008-01</date><risdate>2008</risdate><volume>59</volume><issue>1</issue><spage>124</spage><epage>131</epage><pages>124-131</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>The dependence of hyperpolarized (HP) 3He T1 on local oxygen concentration provides the basis for measuring the partial pressure of oxygen (pO2) and oxygen depletion rate (R) in the lungs. Precise measurements of this type are difficult because the oxygen effect manifests itself through a decay of signal, leading to noisy images at the end of the series. The depolarization caused by RF excitation pulses further complicates the problem. It is therefore important to optimize scan parameters, such as measurement timing and flip angle, to obtain accurate and reproducible measurements. This work presents a new single‐acquisition technique in conjunction with the multiple regression fitting method for data evaluation. Analytical expressions for the measurement uncertainties are derived. A total of four types of single‐acquisition timing schemes are investigated; simulation shows a large uncertainty variation between these schemes (pO2: 7.5–30.2%; R: 47.4–173.7%). A basic procedure for optimizing scan parameters is then described. A phantom experiment was conducted to verify the simulation results. Repeated in vivo measurements with the optimal scheme in a rabbit experiment showed that average variation of global mean is 6.2% for pO2 and 12.0% for R, and that the average variation of percentiles (10th, 25th, 50th, 75th, and 90th) is 8.7% for pO2 and 19.0% for R. Magn Reson Med, 2007. © 2007 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>18050348</pmid><doi>10.1002/mrm.21416</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2008-01, Vol.59 (1), p.124-131 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_70173516 |
source | Wiley |
subjects | Animals Helium hyperpolarized helium-3 MRI Isotopes Lung - physiology Magnetic Resonance Imaging - methods measurement uncertainty multiple regression fitting method Partial Pressure partial pressure oxygen and oxygen depletion rate Phantoms, Imaging Rabbits Regression Analysis reproducibility |
title | Optimization of scan parameters in pulmonary partial pressure oxygen measurement by hyperpolarized 3He MRI |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20scan%20parameters%20in%20pulmonary%20partial%20pressure%20oxygen%20measurement%20by%20hyperpolarized%203He%20MRI&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Yu,%20Jiangsheng&rft.date=2008-01&rft.volume=59&rft.issue=1&rft.spage=124&rft.epage=131&rft.pages=124-131&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.21416&rft_dat=%3Cproquest_pubme%3E20856641%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1986-8fad7f9497eaf73a73e2c633b32e66fc823b0e3c7ee9731a63bbdc65ece060ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20856641&rft_id=info:pmid/18050348&rfr_iscdi=true |