Loading…

Changing Morphology of BaO/Al2O3 during NO2 Uptake and Release

The changes in the morphology of Ba-oxide-based NO x storage/reduction catalysts were investigated using time-resolved X-ray diffraction, transmission electron microscopy, and energy dispersed spectroscopy. Large Ba(NO3)2 crystallites form on the alumina support when the catalyst is prepared by the...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2005-04, Vol.109 (15), p.7339-7344
Main Authors: Szanyi, János, Kwak, Ja Hun, Hanson, Jonathan, Wang, Chongmin, Szailer, Tamás, Peden, Charles H. F
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7344
container_issue 15
container_start_page 7339
container_title The journal of physical chemistry. B
container_volume 109
creator Szanyi, János
Kwak, Ja Hun
Hanson, Jonathan
Wang, Chongmin
Szailer, Tamás
Peden, Charles H. F
description The changes in the morphology of Ba-oxide-based NO x storage/reduction catalysts were investigated using time-resolved X-ray diffraction, transmission electron microscopy, and energy dispersed spectroscopy. Large Ba(NO3)2 crystallites form on the alumina support when the catalyst is prepared by the incipient wetness method using an aqueous Ba(NO3)2 solution. Heating the sample to 873 K in a He flow results in the decomposition of the Ba(NO3)2 phase and the formation of both a monolayer BaO film strongly interacting with the alumina support and nanocrystalline BaO particles. Upon NO2 exposure of these BaO phases at room temperature, small (nanosized) Ba(NO3)2 crystals and a monolayer of surface nitrate form. Heating this sample in NO2 results in the coalescence of the nanocrystalline Ba(NO3)2 particles into large crystals. The average crystal size in the reformed Ba(NO3)2 layer is significantly smaller than that measured after the catalyst preparation. Evidence is also presented for the existence of a monolayer Ba(NO3)2 phase after thermal treatment in NO2, in addition to these large crystals. These results clearly demonstrate the dynamic nature of the Ba-containing phases that are active in the NO x storage/reduction process. The proposed morphology cycle may contribute to the understanding of the changes observed in the performances of these catalysts during actual operating conditions.
doi_str_mv 10.1021/jp044160z
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_70173867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70173867</sourcerecordid><originalsourceid>FETCH-LOGICAL-a207t-eb5b8ace99faf27a085a9559ef5e25caa4cc621cb1e66e4bd95bbc3963003a3b3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqWw4AdQNrAL9SN2nA1SqXhJpYHSrq2x4_SVJiFOJMrXk6qli9GMdM-M5l6Ergm-J5iS_qrEQUAE_j1BXcIp9tsKTw-zIFh00IVzK4wpp1Kcow4RkhMZ4C56GC4gny_zufdeVOWiyIr51itS7xHi_iCjMfOSptrJ45h6s7KGtfUgT7yJzSw4e4nOUsicvTr0Hpo9P02Hr_4ofnkbDkY-tJ_UvtVcSzA2ilJIaQhYcog4j2zKLeUGIDBGUGI0sULYQCcR19qwSDCMGTDNeuhuf7esiu_Gulptls7YLIPcFo1TISYhkyJswZsD2OiNTVRZLTdQbdW_4xbw98DS1fbnqEO1Vu16yNX040uN5acMeDBRUcvf7nkwTq2Kpspbn4pgtUteHZNnf7GScGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70173867</pqid></control><display><type>article</type><title>Changing Morphology of BaO/Al2O3 during NO2 Uptake and Release</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Szanyi, János ; Kwak, Ja Hun ; Hanson, Jonathan ; Wang, Chongmin ; Szailer, Tamás ; Peden, Charles H. F</creator><creatorcontrib>Szanyi, János ; Kwak, Ja Hun ; Hanson, Jonathan ; Wang, Chongmin ; Szailer, Tamás ; Peden, Charles H. F</creatorcontrib><description>The changes in the morphology of Ba-oxide-based NO x storage/reduction catalysts were investigated using time-resolved X-ray diffraction, transmission electron microscopy, and energy dispersed spectroscopy. Large Ba(NO3)2 crystallites form on the alumina support when the catalyst is prepared by the incipient wetness method using an aqueous Ba(NO3)2 solution. Heating the sample to 873 K in a He flow results in the decomposition of the Ba(NO3)2 phase and the formation of both a monolayer BaO film strongly interacting with the alumina support and nanocrystalline BaO particles. Upon NO2 exposure of these BaO phases at room temperature, small (nanosized) Ba(NO3)2 crystals and a monolayer of surface nitrate form. Heating this sample in NO2 results in the coalescence of the nanocrystalline Ba(NO3)2 particles into large crystals. The average crystal size in the reformed Ba(NO3)2 layer is significantly smaller than that measured after the catalyst preparation. Evidence is also presented for the existence of a monolayer Ba(NO3)2 phase after thermal treatment in NO2, in addition to these large crystals. These results clearly demonstrate the dynamic nature of the Ba-containing phases that are active in the NO x storage/reduction process. The proposed morphology cycle may contribute to the understanding of the changes observed in the performances of these catalysts during actual operating conditions.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp044160z</identifier><identifier>PMID: 16851840</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2005-04, Vol.109 (15), p.7339-7344</ispartof><rights>Copyright © 2005 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16851840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szanyi, János</creatorcontrib><creatorcontrib>Kwak, Ja Hun</creatorcontrib><creatorcontrib>Hanson, Jonathan</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Szailer, Tamás</creatorcontrib><creatorcontrib>Peden, Charles H. F</creatorcontrib><title>Changing Morphology of BaO/Al2O3 during NO2 Uptake and Release</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The changes in the morphology of Ba-oxide-based NO x storage/reduction catalysts were investigated using time-resolved X-ray diffraction, transmission electron microscopy, and energy dispersed spectroscopy. Large Ba(NO3)2 crystallites form on the alumina support when the catalyst is prepared by the incipient wetness method using an aqueous Ba(NO3)2 solution. Heating the sample to 873 K in a He flow results in the decomposition of the Ba(NO3)2 phase and the formation of both a monolayer BaO film strongly interacting with the alumina support and nanocrystalline BaO particles. Upon NO2 exposure of these BaO phases at room temperature, small (nanosized) Ba(NO3)2 crystals and a monolayer of surface nitrate form. Heating this sample in NO2 results in the coalescence of the nanocrystalline Ba(NO3)2 particles into large crystals. The average crystal size in the reformed Ba(NO3)2 layer is significantly smaller than that measured after the catalyst preparation. Evidence is also presented for the existence of a monolayer Ba(NO3)2 phase after thermal treatment in NO2, in addition to these large crystals. These results clearly demonstrate the dynamic nature of the Ba-containing phases that are active in the NO x storage/reduction process. The proposed morphology cycle may contribute to the understanding of the changes observed in the performances of these catalysts during actual operating conditions.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EoqWw4AdQNrAL9SN2nA1SqXhJpYHSrq2x4_SVJiFOJMrXk6qli9GMdM-M5l6Ergm-J5iS_qrEQUAE_j1BXcIp9tsKTw-zIFh00IVzK4wpp1Kcow4RkhMZ4C56GC4gny_zufdeVOWiyIr51itS7xHi_iCjMfOSptrJ45h6s7KGtfUgT7yJzSw4e4nOUsicvTr0Hpo9P02Hr_4ofnkbDkY-tJ_UvtVcSzA2ilJIaQhYcog4j2zKLeUGIDBGUGI0sULYQCcR19qwSDCMGTDNeuhuf7esiu_Gulptls7YLIPcFo1TISYhkyJswZsD2OiNTVRZLTdQbdW_4xbw98DS1fbnqEO1Vu16yNX040uN5acMeDBRUcvf7nkwTq2Kpspbn4pgtUteHZNnf7GScGc</recordid><startdate>20050421</startdate><enddate>20050421</enddate><creator>Szanyi, János</creator><creator>Kwak, Ja Hun</creator><creator>Hanson, Jonathan</creator><creator>Wang, Chongmin</creator><creator>Szailer, Tamás</creator><creator>Peden, Charles H. F</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20050421</creationdate><title>Changing Morphology of BaO/Al2O3 during NO2 Uptake and Release</title><author>Szanyi, János ; Kwak, Ja Hun ; Hanson, Jonathan ; Wang, Chongmin ; Szailer, Tamás ; Peden, Charles H. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a207t-eb5b8ace99faf27a085a9559ef5e25caa4cc621cb1e66e4bd95bbc3963003a3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szanyi, János</creatorcontrib><creatorcontrib>Kwak, Ja Hun</creatorcontrib><creatorcontrib>Hanson, Jonathan</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Szailer, Tamás</creatorcontrib><creatorcontrib>Peden, Charles H. F</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szanyi, János</au><au>Kwak, Ja Hun</au><au>Hanson, Jonathan</au><au>Wang, Chongmin</au><au>Szailer, Tamás</au><au>Peden, Charles H. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changing Morphology of BaO/Al2O3 during NO2 Uptake and Release</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2005-04-21</date><risdate>2005</risdate><volume>109</volume><issue>15</issue><spage>7339</spage><epage>7344</epage><pages>7339-7344</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The changes in the morphology of Ba-oxide-based NO x storage/reduction catalysts were investigated using time-resolved X-ray diffraction, transmission electron microscopy, and energy dispersed spectroscopy. Large Ba(NO3)2 crystallites form on the alumina support when the catalyst is prepared by the incipient wetness method using an aqueous Ba(NO3)2 solution. Heating the sample to 873 K in a He flow results in the decomposition of the Ba(NO3)2 phase and the formation of both a monolayer BaO film strongly interacting with the alumina support and nanocrystalline BaO particles. Upon NO2 exposure of these BaO phases at room temperature, small (nanosized) Ba(NO3)2 crystals and a monolayer of surface nitrate form. Heating this sample in NO2 results in the coalescence of the nanocrystalline Ba(NO3)2 particles into large crystals. The average crystal size in the reformed Ba(NO3)2 layer is significantly smaller than that measured after the catalyst preparation. Evidence is also presented for the existence of a monolayer Ba(NO3)2 phase after thermal treatment in NO2, in addition to these large crystals. These results clearly demonstrate the dynamic nature of the Ba-containing phases that are active in the NO x storage/reduction process. The proposed morphology cycle may contribute to the understanding of the changes observed in the performances of these catalysts during actual operating conditions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16851840</pmid><doi>10.1021/jp044160z</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2005-04, Vol.109 (15), p.7339-7344
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_70173867
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Changing Morphology of BaO/Al2O3 during NO2 Uptake and Release
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changing%20Morphology%20of%20BaO/Al2O3%20during%20NO2%20Uptake%20and%20Release&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Szanyi,%20J%C3%A1nos&rft.date=2005-04-21&rft.volume=109&rft.issue=15&rft.spage=7339&rft.epage=7344&rft.pages=7339-7344&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp044160z&rft_dat=%3Cproquest_pubme%3E70173867%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a207t-eb5b8ace99faf27a085a9559ef5e25caa4cc621cb1e66e4bd95bbc3963003a3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70173867&rft_id=info:pmid/16851840&rfr_iscdi=true