Loading…
Study of Porous Silicon Nanostructures as Hydrogen Reservoirs
The amount of hydrogen present in porous silicon (PS) nanostructures is analyzed in detail. Concentration of atomic hydrogen chemically bound to the specific surface of PS is quantitatively evaluated by means of attenuated total reflection infrared (ATR-IR) spectroscopy and temperature-programmed de...
Saved in:
Published in: | The journal of physical chemistry. B 2005-10, Vol.109 (42), p.19711-19718 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a417t-4f6398ddddb1bea39abedc0ddefad9c10aac4c1c4857599afa7eb6b06eed80723 |
---|---|
cites | cdi_FETCH-LOGICAL-a417t-4f6398ddddb1bea39abedc0ddefad9c10aac4c1c4857599afa7eb6b06eed80723 |
container_end_page | 19718 |
container_issue | 42 |
container_start_page | 19711 |
container_title | The journal of physical chemistry. B |
container_volume | 109 |
creator | Lysenko, Vladimir Bidault, Fabrice Alekseev, Sergei Zaitsev, Vladimir Barbier, Daniel Turpin, Christophe Geobaldo, Francesco Rivolo, Paola Garrone, Edoardo |
description | The amount of hydrogen present in porous silicon (PS) nanostructures is analyzed in detail. Concentration of atomic hydrogen chemically bound to the specific surface of PS is quantitatively evaluated by means of attenuated total reflection infrared (ATR-IR) spectroscopy and temperature-programmed desorption (TPD) spectroscopy. The concentration values are correlated to the PS nanoscale morphology. In particular, the influence of porosity, silicon nanocrystallite dimension, and shape on hydrogen concentration values is described. Hydrogen concentrations in fresh, aged, as well as in chemically and thermally treated PS layers are measured. Maximal hydrogen concentration of 66 mmol/g is detected in nanoporous layers with high (>95%) porosity consisting of nanocrystallites with dimensions of about 2 nm. Mass energy density that can be potentially obtained from this amount of hydrogen through a low-temperature fuel cell is estimated to be about 2176 W-h/kg and is found to be comparable with other substances containing hydrogen, such as hydride materials and methanol, which are usually used as hydrogen reservoirs. |
doi_str_mv | 10.1021/jp053007h |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70174059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70174059</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-4f6398ddddb1bea39abedc0ddefad9c10aac4c1c4857599afa7eb6b06eed80723</originalsourceid><addsrcrecordid>eNptkFFLwzAQgIMobk4f_APSFwUfqknbJM2DDzLcJgwd2_Q1pMlVO7dmJq24f2-lZb54cNzBfdwdH0LnBN8QHJHb1RbTGGP-foD6hEY4bJIfdj0jmPXQifcrjCMapewY9QhLaUwT0Ud3i6o2u8Dmwcw6W_tgUawLbcvgSZXWV67WVe3AB8oHk51x9g3KYA4e3JctnD9FR7laezjr6gC9jB6Ww0k4fR4_Du-noUoIr8IkZ7FITRMZyUDFQmVgNDYGcmWEJlgpnWiik5RyKoTKFYeMZZgBmBTzKB6gq3bv1tnPGnwlN4XXsF6rEpqnJceEJ5iKBrxuQe2s9w5yuXXFRrmdJFj-upJ7Vw170S2tsw2YP7KT0wBhCxS-gu_9XLkPyXjMqVzOFjKZzsVoIsbyteEvW15pL1e2dmXj5J_DP68YgPc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70174059</pqid></control><display><type>article</type><title>Study of Porous Silicon Nanostructures as Hydrogen Reservoirs</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Lysenko, Vladimir ; Bidault, Fabrice ; Alekseev, Sergei ; Zaitsev, Vladimir ; Barbier, Daniel ; Turpin, Christophe ; Geobaldo, Francesco ; Rivolo, Paola ; Garrone, Edoardo</creator><creatorcontrib>Lysenko, Vladimir ; Bidault, Fabrice ; Alekseev, Sergei ; Zaitsev, Vladimir ; Barbier, Daniel ; Turpin, Christophe ; Geobaldo, Francesco ; Rivolo, Paola ; Garrone, Edoardo</creatorcontrib><description>The amount of hydrogen present in porous silicon (PS) nanostructures is analyzed in detail. Concentration of atomic hydrogen chemically bound to the specific surface of PS is quantitatively evaluated by means of attenuated total reflection infrared (ATR-IR) spectroscopy and temperature-programmed desorption (TPD) spectroscopy. The concentration values are correlated to the PS nanoscale morphology. In particular, the influence of porosity, silicon nanocrystallite dimension, and shape on hydrogen concentration values is described. Hydrogen concentrations in fresh, aged, as well as in chemically and thermally treated PS layers are measured. Maximal hydrogen concentration of 66 mmol/g is detected in nanoporous layers with high (>95%) porosity consisting of nanocrystallites with dimensions of about 2 nm. Mass energy density that can be potentially obtained from this amount of hydrogen through a low-temperature fuel cell is estimated to be about 2176 W-h/kg and is found to be comparable with other substances containing hydrogen, such as hydride materials and methanol, which are usually used as hydrogen reservoirs.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp053007h</identifier><identifier>PMID: 16853549</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2005-10, Vol.109 (42), p.19711-19718</ispartof><rights>Copyright © 2005 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-4f6398ddddb1bea39abedc0ddefad9c10aac4c1c4857599afa7eb6b06eed80723</citedby><cites>FETCH-LOGICAL-a417t-4f6398ddddb1bea39abedc0ddefad9c10aac4c1c4857599afa7eb6b06eed80723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16853549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lysenko, Vladimir</creatorcontrib><creatorcontrib>Bidault, Fabrice</creatorcontrib><creatorcontrib>Alekseev, Sergei</creatorcontrib><creatorcontrib>Zaitsev, Vladimir</creatorcontrib><creatorcontrib>Barbier, Daniel</creatorcontrib><creatorcontrib>Turpin, Christophe</creatorcontrib><creatorcontrib>Geobaldo, Francesco</creatorcontrib><creatorcontrib>Rivolo, Paola</creatorcontrib><creatorcontrib>Garrone, Edoardo</creatorcontrib><title>Study of Porous Silicon Nanostructures as Hydrogen Reservoirs</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The amount of hydrogen present in porous silicon (PS) nanostructures is analyzed in detail. Concentration of atomic hydrogen chemically bound to the specific surface of PS is quantitatively evaluated by means of attenuated total reflection infrared (ATR-IR) spectroscopy and temperature-programmed desorption (TPD) spectroscopy. The concentration values are correlated to the PS nanoscale morphology. In particular, the influence of porosity, silicon nanocrystallite dimension, and shape on hydrogen concentration values is described. Hydrogen concentrations in fresh, aged, as well as in chemically and thermally treated PS layers are measured. Maximal hydrogen concentration of 66 mmol/g is detected in nanoporous layers with high (>95%) porosity consisting of nanocrystallites with dimensions of about 2 nm. Mass energy density that can be potentially obtained from this amount of hydrogen through a low-temperature fuel cell is estimated to be about 2176 W-h/kg and is found to be comparable with other substances containing hydrogen, such as hydride materials and methanol, which are usually used as hydrogen reservoirs.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNptkFFLwzAQgIMobk4f_APSFwUfqknbJM2DDzLcJgwd2_Q1pMlVO7dmJq24f2-lZb54cNzBfdwdH0LnBN8QHJHb1RbTGGP-foD6hEY4bJIfdj0jmPXQifcrjCMapewY9QhLaUwT0Ud3i6o2u8Dmwcw6W_tgUawLbcvgSZXWV67WVe3AB8oHk51x9g3KYA4e3JctnD9FR7laezjr6gC9jB6Ww0k4fR4_Du-noUoIr8IkZ7FITRMZyUDFQmVgNDYGcmWEJlgpnWiik5RyKoTKFYeMZZgBmBTzKB6gq3bv1tnPGnwlN4XXsF6rEpqnJceEJ5iKBrxuQe2s9w5yuXXFRrmdJFj-upJ7Vw170S2tsw2YP7KT0wBhCxS-gu_9XLkPyXjMqVzOFjKZzsVoIsbyteEvW15pL1e2dmXj5J_DP68YgPc</recordid><startdate>20051027</startdate><enddate>20051027</enddate><creator>Lysenko, Vladimir</creator><creator>Bidault, Fabrice</creator><creator>Alekseev, Sergei</creator><creator>Zaitsev, Vladimir</creator><creator>Barbier, Daniel</creator><creator>Turpin, Christophe</creator><creator>Geobaldo, Francesco</creator><creator>Rivolo, Paola</creator><creator>Garrone, Edoardo</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051027</creationdate><title>Study of Porous Silicon Nanostructures as Hydrogen Reservoirs</title><author>Lysenko, Vladimir ; Bidault, Fabrice ; Alekseev, Sergei ; Zaitsev, Vladimir ; Barbier, Daniel ; Turpin, Christophe ; Geobaldo, Francesco ; Rivolo, Paola ; Garrone, Edoardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-4f6398ddddb1bea39abedc0ddefad9c10aac4c1c4857599afa7eb6b06eed80723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lysenko, Vladimir</creatorcontrib><creatorcontrib>Bidault, Fabrice</creatorcontrib><creatorcontrib>Alekseev, Sergei</creatorcontrib><creatorcontrib>Zaitsev, Vladimir</creatorcontrib><creatorcontrib>Barbier, Daniel</creatorcontrib><creatorcontrib>Turpin, Christophe</creatorcontrib><creatorcontrib>Geobaldo, Francesco</creatorcontrib><creatorcontrib>Rivolo, Paola</creatorcontrib><creatorcontrib>Garrone, Edoardo</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lysenko, Vladimir</au><au>Bidault, Fabrice</au><au>Alekseev, Sergei</au><au>Zaitsev, Vladimir</au><au>Barbier, Daniel</au><au>Turpin, Christophe</au><au>Geobaldo, Francesco</au><au>Rivolo, Paola</au><au>Garrone, Edoardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Porous Silicon Nanostructures as Hydrogen Reservoirs</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2005-10-27</date><risdate>2005</risdate><volume>109</volume><issue>42</issue><spage>19711</spage><epage>19718</epage><pages>19711-19718</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The amount of hydrogen present in porous silicon (PS) nanostructures is analyzed in detail. Concentration of atomic hydrogen chemically bound to the specific surface of PS is quantitatively evaluated by means of attenuated total reflection infrared (ATR-IR) spectroscopy and temperature-programmed desorption (TPD) spectroscopy. The concentration values are correlated to the PS nanoscale morphology. In particular, the influence of porosity, silicon nanocrystallite dimension, and shape on hydrogen concentration values is described. Hydrogen concentrations in fresh, aged, as well as in chemically and thermally treated PS layers are measured. Maximal hydrogen concentration of 66 mmol/g is detected in nanoporous layers with high (>95%) porosity consisting of nanocrystallites with dimensions of about 2 nm. Mass energy density that can be potentially obtained from this amount of hydrogen through a low-temperature fuel cell is estimated to be about 2176 W-h/kg and is found to be comparable with other substances containing hydrogen, such as hydride materials and methanol, which are usually used as hydrogen reservoirs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16853549</pmid><doi>10.1021/jp053007h</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2005-10, Vol.109 (42), p.19711-19718 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_70174059 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Study of Porous Silicon Nanostructures as Hydrogen Reservoirs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Porous%20Silicon%20Nanostructures%20as%20Hydrogen%20Reservoirs&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Lysenko,%20Vladimir&rft.date=2005-10-27&rft.volume=109&rft.issue=42&rft.spage=19711&rft.epage=19718&rft.pages=19711-19718&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp053007h&rft_dat=%3Cproquest_cross%3E70174059%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a417t-4f6398ddddb1bea39abedc0ddefad9c10aac4c1c4857599afa7eb6b06eed80723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70174059&rft_id=info:pmid/16853549&rfr_iscdi=true |