Loading…

Temperature-Induced Nucleation of Poly(p-phenylene vinylene-co-2,5-dioctyloxy-m-phenylene vinylene) Crystallization by HiPco Single-Walled Carbon Nanotubes

Hybrid systems of the conjugated organic polymer poly(p-phenylene vinylene-co-2,5-dioctyloxy-m-phenylene vinylene)(PmPV) and HiPco single-walled carbon nanatubes (SWNTs) are explored using spectroscopic and thermal techniques to determine specific interactions. Vibrational spectroscopy indicates a w...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2005-03, Vol.109 (12), p.5600-5607
Main Authors: Keogh, S. M, Hedderman, T. G, Rüther, M. G, Lyng, F. M, Gregan, E, Farrell, G. F, Chambers, G, Byrne, H. J
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a417t-385836c42fe92a6dad5319df9edad91cdcad5f940b60ee724ff2316e73cc14a83
cites cdi_FETCH-LOGICAL-a417t-385836c42fe92a6dad5319df9edad91cdcad5f940b60ee724ff2316e73cc14a83
container_end_page 5607
container_issue 12
container_start_page 5600
container_title The journal of physical chemistry. B
container_volume 109
creator Keogh, S. M
Hedderman, T. G
Rüther, M. G
Lyng, F. M
Gregan, E
Farrell, G. F
Chambers, G
Byrne, H. J
description Hybrid systems of the conjugated organic polymer poly(p-phenylene vinylene-co-2,5-dioctyloxy-m-phenylene vinylene)(PmPV) and HiPco single-walled carbon nanatubes (SWNTs) are explored using spectroscopic and thermal techniques to determine specific interactions. Vibrational spectroscopy indicates a weak interaction, and this is further elucidated using differential scanning calorimetry (DSC), confocal laser scanning microscopy, temperature-dependent Raman spectroscopy, and temperature-dependent infrared spectroscopy of the raw materials and the composite. An endothermic transition is observed in the DSC of both the polymer and the 0.1% HiPco composite in the region of 50 °C. Also observed in the DSC of the composite is a double-peaked endotherm at −39 and −49 °C, which does not appear in the polymer. The Raman spectroscopy of the polymer upon increasing the temperature to 60 °C shows a diminished cis-vinylene mode at 1575 cm-1, with an increase in relative intensity of the trans-vinylene mode at 1630 cm-1. Partially irreversible change in isomerization suggests increased order in the polymer. This change in the polymer is also manifest in the Raman composite spectrum upon increase of the temperature to 60 °C, where the spectrum becomes abruptly dominated by nanotubes. Raman spectroscopy of the composite shows no change at −35 °C; however, infrared absorption measurements suggest that the transition at −35 °C derives from the polymer side chains. Here the composite at −35 °C shows a change in the absorbance of the polymer side chain aryl−oxide linkage at 1250 cm-1 and alkyl−oxide stretch at 1050 cm-1. Infrared spectra thus suggest that the transitions in the lower temperature region around −35 °C are side chain-induced, while Raman spectra suggest that the transition at 60 °C is backbone-induced. Furthermore, temperature cycling induces an irreversible decrease in the mean fluorescence intensity of the polymer, coupled with a further reduction in the mean fluorescence intensity of the composite. This suggests that an increase in crystallization of the composite is supported and enhanced by an increase in ordering of the polymer. Implications are discussed.
doi_str_mv 10.1021/jp044755u
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70180106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70180106</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-385836c42fe92a6dad5319df9edad91cdcad5f940b60ee724ff2316e73cc14a83</originalsourceid><addsrcrecordid>eNptkV-L1DAUxYMo7h998AtIX5RdMJqkTdo-6qDOyrCOzIjgS0jTW82YNjVpZOtX8csa6bC-7EPI4Z4f58K5CD2h5CUljL46jKQoSs7jPXRKOSM4vfL-UQtKxAk6C-FACOOsEg_RCRUVp4Lkp-jPHvoRvJqiB3w1tFFDm11HbUFNxg2Z67Kts_PFiMfvMMwWBsh-mUVg7TB7wXFrnJ5m625m3N-BXWYrP4dJWWt-L6HNnK3NVrtsZ4ZvFvCX5KW1K-Wb5F6rwU2xgfAIPeiUDfD4-J-jz-_e7ldrvPn4_mr1eoNVQcsJ5xWvcqEL1kHNlGhVy3Nat10NSdZUtzpNurogjSAAJSu6juVUQJlrTQtV5efo-ZI7evczQphkb4IGa9UALgZZElqR1GICLxdQexeCh06O3vTKz5IS-e8S8vYSiX16DI1ND-1_8lh9AvACmDDBza2v_A8pyrzkcr_dSbL-tNt8eEPk18Q_W3ilgzy46IfUyR2L_wIhcKKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70180106</pqid></control><display><type>article</type><title>Temperature-Induced Nucleation of Poly(p-phenylene vinylene-co-2,5-dioctyloxy-m-phenylene vinylene) Crystallization by HiPco Single-Walled Carbon Nanotubes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Keogh, S. M ; Hedderman, T. G ; Rüther, M. G ; Lyng, F. M ; Gregan, E ; Farrell, G. F ; Chambers, G ; Byrne, H. J</creator><creatorcontrib>Keogh, S. M ; Hedderman, T. G ; Rüther, M. G ; Lyng, F. M ; Gregan, E ; Farrell, G. F ; Chambers, G ; Byrne, H. J</creatorcontrib><description>Hybrid systems of the conjugated organic polymer poly(p-phenylene vinylene-co-2,5-dioctyloxy-m-phenylene vinylene)(PmPV) and HiPco single-walled carbon nanatubes (SWNTs) are explored using spectroscopic and thermal techniques to determine specific interactions. Vibrational spectroscopy indicates a weak interaction, and this is further elucidated using differential scanning calorimetry (DSC), confocal laser scanning microscopy, temperature-dependent Raman spectroscopy, and temperature-dependent infrared spectroscopy of the raw materials and the composite. An endothermic transition is observed in the DSC of both the polymer and the 0.1% HiPco composite in the region of 50 °C. Also observed in the DSC of the composite is a double-peaked endotherm at −39 and −49 °C, which does not appear in the polymer. The Raman spectroscopy of the polymer upon increasing the temperature to 60 °C shows a diminished cis-vinylene mode at 1575 cm-1, with an increase in relative intensity of the trans-vinylene mode at 1630 cm-1. Partially irreversible change in isomerization suggests increased order in the polymer. This change in the polymer is also manifest in the Raman composite spectrum upon increase of the temperature to 60 °C, where the spectrum becomes abruptly dominated by nanotubes. Raman spectroscopy of the composite shows no change at −35 °C; however, infrared absorption measurements suggest that the transition at −35 °C derives from the polymer side chains. Here the composite at −35 °C shows a change in the absorbance of the polymer side chain aryl−oxide linkage at 1250 cm-1 and alkyl−oxide stretch at 1050 cm-1. Infrared spectra thus suggest that the transitions in the lower temperature region around −35 °C are side chain-induced, while Raman spectra suggest that the transition at 60 °C is backbone-induced. Furthermore, temperature cycling induces an irreversible decrease in the mean fluorescence intensity of the polymer, coupled with a further reduction in the mean fluorescence intensity of the composite. This suggests that an increase in crystallization of the composite is supported and enhanced by an increase in ordering of the polymer. Implications are discussed.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp044755u</identifier><identifier>PMID: 16851603</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2005-03, Vol.109 (12), p.5600-5607</ispartof><rights>Copyright © 2005 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-385836c42fe92a6dad5319df9edad91cdcad5f940b60ee724ff2316e73cc14a83</citedby><cites>FETCH-LOGICAL-a417t-385836c42fe92a6dad5319df9edad91cdcad5f940b60ee724ff2316e73cc14a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16851603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keogh, S. M</creatorcontrib><creatorcontrib>Hedderman, T. G</creatorcontrib><creatorcontrib>Rüther, M. G</creatorcontrib><creatorcontrib>Lyng, F. M</creatorcontrib><creatorcontrib>Gregan, E</creatorcontrib><creatorcontrib>Farrell, G. F</creatorcontrib><creatorcontrib>Chambers, G</creatorcontrib><creatorcontrib>Byrne, H. J</creatorcontrib><title>Temperature-Induced Nucleation of Poly(p-phenylene vinylene-co-2,5-dioctyloxy-m-phenylene vinylene) Crystallization by HiPco Single-Walled Carbon Nanotubes</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Hybrid systems of the conjugated organic polymer poly(p-phenylene vinylene-co-2,5-dioctyloxy-m-phenylene vinylene)(PmPV) and HiPco single-walled carbon nanatubes (SWNTs) are explored using spectroscopic and thermal techniques to determine specific interactions. Vibrational spectroscopy indicates a weak interaction, and this is further elucidated using differential scanning calorimetry (DSC), confocal laser scanning microscopy, temperature-dependent Raman spectroscopy, and temperature-dependent infrared spectroscopy of the raw materials and the composite. An endothermic transition is observed in the DSC of both the polymer and the 0.1% HiPco composite in the region of 50 °C. Also observed in the DSC of the composite is a double-peaked endotherm at −39 and −49 °C, which does not appear in the polymer. The Raman spectroscopy of the polymer upon increasing the temperature to 60 °C shows a diminished cis-vinylene mode at 1575 cm-1, with an increase in relative intensity of the trans-vinylene mode at 1630 cm-1. Partially irreversible change in isomerization suggests increased order in the polymer. This change in the polymer is also manifest in the Raman composite spectrum upon increase of the temperature to 60 °C, where the spectrum becomes abruptly dominated by nanotubes. Raman spectroscopy of the composite shows no change at −35 °C; however, infrared absorption measurements suggest that the transition at −35 °C derives from the polymer side chains. Here the composite at −35 °C shows a change in the absorbance of the polymer side chain aryl−oxide linkage at 1250 cm-1 and alkyl−oxide stretch at 1050 cm-1. Infrared spectra thus suggest that the transitions in the lower temperature region around −35 °C are side chain-induced, while Raman spectra suggest that the transition at 60 °C is backbone-induced. Furthermore, temperature cycling induces an irreversible decrease in the mean fluorescence intensity of the polymer, coupled with a further reduction in the mean fluorescence intensity of the composite. This suggests that an increase in crystallization of the composite is supported and enhanced by an increase in ordering of the polymer. Implications are discussed.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNptkV-L1DAUxYMo7h998AtIX5RdMJqkTdo-6qDOyrCOzIjgS0jTW82YNjVpZOtX8csa6bC-7EPI4Z4f58K5CD2h5CUljL46jKQoSs7jPXRKOSM4vfL-UQtKxAk6C-FACOOsEg_RCRUVp4Lkp-jPHvoRvJqiB3w1tFFDm11HbUFNxg2Z67Kts_PFiMfvMMwWBsh-mUVg7TB7wXFrnJ5m625m3N-BXWYrP4dJWWt-L6HNnK3NVrtsZ4ZvFvCX5KW1K-Wb5F6rwU2xgfAIPeiUDfD4-J-jz-_e7ldrvPn4_mr1eoNVQcsJ5xWvcqEL1kHNlGhVy3Nat10NSdZUtzpNurogjSAAJSu6juVUQJlrTQtV5efo-ZI7evczQphkb4IGa9UALgZZElqR1GICLxdQexeCh06O3vTKz5IS-e8S8vYSiX16DI1ND-1_8lh9AvACmDDBza2v_A8pyrzkcr_dSbL-tNt8eEPk18Q_W3ilgzy46IfUyR2L_wIhcKKM</recordid><startdate>20050331</startdate><enddate>20050331</enddate><creator>Keogh, S. M</creator><creator>Hedderman, T. G</creator><creator>Rüther, M. G</creator><creator>Lyng, F. M</creator><creator>Gregan, E</creator><creator>Farrell, G. F</creator><creator>Chambers, G</creator><creator>Byrne, H. J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050331</creationdate><title>Temperature-Induced Nucleation of Poly(p-phenylene vinylene-co-2,5-dioctyloxy-m-phenylene vinylene) Crystallization by HiPco Single-Walled Carbon Nanotubes</title><author>Keogh, S. M ; Hedderman, T. G ; Rüther, M. G ; Lyng, F. M ; Gregan, E ; Farrell, G. F ; Chambers, G ; Byrne, H. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-385836c42fe92a6dad5319df9edad91cdcad5f940b60ee724ff2316e73cc14a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keogh, S. M</creatorcontrib><creatorcontrib>Hedderman, T. G</creatorcontrib><creatorcontrib>Rüther, M. G</creatorcontrib><creatorcontrib>Lyng, F. M</creatorcontrib><creatorcontrib>Gregan, E</creatorcontrib><creatorcontrib>Farrell, G. F</creatorcontrib><creatorcontrib>Chambers, G</creatorcontrib><creatorcontrib>Byrne, H. J</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keogh, S. M</au><au>Hedderman, T. G</au><au>Rüther, M. G</au><au>Lyng, F. M</au><au>Gregan, E</au><au>Farrell, G. F</au><au>Chambers, G</au><au>Byrne, H. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-Induced Nucleation of Poly(p-phenylene vinylene-co-2,5-dioctyloxy-m-phenylene vinylene) Crystallization by HiPco Single-Walled Carbon Nanotubes</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2005-03-31</date><risdate>2005</risdate><volume>109</volume><issue>12</issue><spage>5600</spage><epage>5607</epage><pages>5600-5607</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Hybrid systems of the conjugated organic polymer poly(p-phenylene vinylene-co-2,5-dioctyloxy-m-phenylene vinylene)(PmPV) and HiPco single-walled carbon nanatubes (SWNTs) are explored using spectroscopic and thermal techniques to determine specific interactions. Vibrational spectroscopy indicates a weak interaction, and this is further elucidated using differential scanning calorimetry (DSC), confocal laser scanning microscopy, temperature-dependent Raman spectroscopy, and temperature-dependent infrared spectroscopy of the raw materials and the composite. An endothermic transition is observed in the DSC of both the polymer and the 0.1% HiPco composite in the region of 50 °C. Also observed in the DSC of the composite is a double-peaked endotherm at −39 and −49 °C, which does not appear in the polymer. The Raman spectroscopy of the polymer upon increasing the temperature to 60 °C shows a diminished cis-vinylene mode at 1575 cm-1, with an increase in relative intensity of the trans-vinylene mode at 1630 cm-1. Partially irreversible change in isomerization suggests increased order in the polymer. This change in the polymer is also manifest in the Raman composite spectrum upon increase of the temperature to 60 °C, where the spectrum becomes abruptly dominated by nanotubes. Raman spectroscopy of the composite shows no change at −35 °C; however, infrared absorption measurements suggest that the transition at −35 °C derives from the polymer side chains. Here the composite at −35 °C shows a change in the absorbance of the polymer side chain aryl−oxide linkage at 1250 cm-1 and alkyl−oxide stretch at 1050 cm-1. Infrared spectra thus suggest that the transitions in the lower temperature region around −35 °C are side chain-induced, while Raman spectra suggest that the transition at 60 °C is backbone-induced. Furthermore, temperature cycling induces an irreversible decrease in the mean fluorescence intensity of the polymer, coupled with a further reduction in the mean fluorescence intensity of the composite. This suggests that an increase in crystallization of the composite is supported and enhanced by an increase in ordering of the polymer. Implications are discussed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16851603</pmid><doi>10.1021/jp044755u</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2005-03, Vol.109 (12), p.5600-5607
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_70180106
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Temperature-Induced Nucleation of Poly(p-phenylene vinylene-co-2,5-dioctyloxy-m-phenylene vinylene) Crystallization by HiPco Single-Walled Carbon Nanotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A21%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-Induced%20Nucleation%20of%20Poly(p-phenylene%20vinylene-co-2,5-dioctyloxy-m-phenylene%20vinylene)%20Crystallization%20by%20HiPco%20Single-Walled%20Carbon%20Nanotubes&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Keogh,%20S.%20M&rft.date=2005-03-31&rft.volume=109&rft.issue=12&rft.spage=5600&rft.epage=5607&rft.pages=5600-5607&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp044755u&rft_dat=%3Cproquest_cross%3E70180106%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a417t-385836c42fe92a6dad5319df9edad91cdcad5f940b60ee724ff2316e73cc14a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70180106&rft_id=info:pmid/16851603&rfr_iscdi=true