Loading…

Polyphosphate at the Streptomyces lividans cytoplasmic membrane is enhanced in the presence of the potassium channel KcsA

Summary The distribution of polyphosphate (polyP) within the cytoplasmic membrane of Streptomyces lividans hyphae or protoplasts has been determined at high spatial resolution by elemental mapping using energy‐filtered electron microscopy (EFTEM). The results revealed that polyP was best traceable a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microscopy (Oxford) 2008-01, Vol.229 (1), p.174-182
Main Authors: HEGERMANN, J., LÜNSDORF, H., OVERBECK, J., SCHREMPF, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary The distribution of polyphosphate (polyP) within the cytoplasmic membrane of Streptomyces lividans hyphae or protoplasts has been determined at high spatial resolution by elemental mapping using energy‐filtered electron microscopy (EFTEM). The results revealed that polyP was best traceable after its interaction with lead ions followed by their precipitation as lead sulphide. Concomitant studies of the S.lividans wildtype (WT) strain and its co‐embedded mutant ΔK (lacking a functional kcsA gene) were conducted by labelling as the surface matrix of either one was labelled by cationic colloidal thorium dioxide. Within the WT strain, additional polyP was found to accumulate distinctly at the inner face of the cytoplasmic membrane. After removal of the cell wall (within protoplasts), the polyP‐derived lead‐sulphide (PbS) precipitate formed clusters of fibrillar material extending up to 50 nm into the cytoplasm. This feature was absent in the ΔK mutant strain. Together the results revealed that the presence of the KcsA channel and the structured polyP coincide.
ISSN:0022-2720
1365-2818
DOI:10.1111/j.1365-2818.2007.01863.x