Loading…

Determination of liposome permeability of ionizable carbamates of zidovudine by steady state fluorescence spectroscopy

In the present paper the relative permeabilities of AZT-Pyp and AZT-Ethy across a phospholipid bilayer were estimated by the means of fluorescence spectroscopy. The center of spectral mass of both non-encapsulated AZT-derivatives (AZT-der) emission spectra increased as a function of the illumination...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2008-02, Vol.61 (2), p.188-198
Main Authors: Raviolo, Mónica A., Sanchez, Julieta M., Briñón, Margarita C., Perillo, María A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present paper the relative permeabilities of AZT-Pyp and AZT-Ethy across a phospholipid bilayer were estimated by the means of fluorescence spectroscopy. The center of spectral mass of both non-encapsulated AZT-derivatives (AZT-der) emission spectra increased as a function of the illumination time inside the spectrofluorimeter cell. This phenomenon was even more evident when drugs were incubated under an UV mercury lamp, suggesting its photolytic origin. AZT-der were protected from photolysis inside liposomes and decomposed upon irradiation when they were free in the aqueous phase. The time-dependent decrease in the fluorescence intensity at a constant wavelength was fitted to a two-exponential equation and the values of rate constants for permeability and photolysis were calculated. It was concluded that AZT-Pyp but not AZT-Ethy diffused across the bilayer. This behavior correlated with the molecular volumes of AZT-Pyp (379.6 Å 3) and AZT-Ethy (450.5 Å 3), determined from the minimum energy conformations but not with previously reported log P values. These results reinforce the concept that not only lipophilicity but also membrane structure and AZT-der molecular size had a critical influence in passive diffusion across bilayers and may help in future refinements of other AZT-der molecular design.
ISSN:0927-7765
1873-4367
DOI:10.1016/j.colsurfb.2007.08.004