Loading…

Secretory IgA and mucin-mediated biofilm formation by environmental strains of Escherichia coli: role of type 1 pili

Recent studies suggest the importance of secretory IgA (SIgA) and mucin in the mediation of biofilm formation by commensal bacteria within the mammalian gut. Studies using a variety of strains of Escherichia coli have indicated that the interaction between E. coli and SIgA is dependent on the type 1...

Full description

Saved in:
Bibliographic Details
Published in:Molecular immunology 2006-02, Vol.43 (4), p.378-387
Main Authors: Bollinger, R. Randal, Everett, Mary Lou, Wahl, Shaina D., Lee, Yu-Huei, Orndorff, Paul E., Parker, William
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent studies suggest the importance of secretory IgA (SIgA) and mucin in the mediation of biofilm formation by commensal bacteria within the mammalian gut. Studies using a variety of strains of Escherichia coli have indicated that the interaction between E. coli and SIgA is dependent on the type 1 pilus. In this study, the importance of the pilus in SIgA-mediated biofilm formation by a laboratory strain (MG1655) and environmental (fecal) strains of E. coli was evaluated. Transient expression of the type 1 pilus by the laboratory strain of E. coli failed to facilitate SIgA-mediated biofilm formation, whereas constitutive expression of the type 1 pilus by the laboratory strain was sufficient. In contrast, transient expression of the type 1 pilus was sufficient to facilitate SIgA-mediated biofilm formation by environmental isolates. The “threshold” for mucin-mediated biofilm formation appeared to be lower than that for SIgA-mediated biofilm formation, perhaps reflecting disparate roles of mucin and SIgA in mediating biofilm formation in the gut. These studies also provide the first procedures for the growth of bacterial biofilms on live epithelial cells in vitro, an important development that may facilitate future studies on the effects of bacterial biofilms on epithelial cells.
ISSN:0161-5890
1872-9142
DOI:10.1016/j.molimm.2005.02.013