Loading…
Nature of Sub-Band Gap Luminescent Eigenmodes in a ZnO Nanowire
The emission spectrum of individual high-quality ZnO nanowires consists of a series of Fabry−Pérot-like eigenmodes that extend far below the band gap of ZnO. Spatially resolved luminescence spectroscopy shows that light is emitted predominantly at both wire ends, with identical spectra reflecting st...
Saved in:
Published in: | Nano letters 2008-01, Vol.8 (1), p.119-123 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The emission spectrum of individual high-quality ZnO nanowires consists of a series of Fabry−Pérot-like eigenmodes that extend far below the band gap of ZnO. Spatially resolved luminescence spectroscopy shows that light is emitted predominantly at both wire ends, with identical spectra reflecting standing wave polariton eigenmodes. The intensity of the modes increases supralinearly with the excitation intensity, indicating that the mode population is governed by scattering among polaritons. Due to strong light−matter interaction, light emission from a ZnO nanowire is not dictated by the electronic band diagram of ZnO but depends also on the wire geometry and the excitation intensity. Delocalized polaritons provide a natural explanation for the pronounced subwavelength guiding in ZnO wires that has been reported previously. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl0721867 |