Loading…

Single-Molecular-Level Study of Claudin-1-Mediated Adhesion

Claudins are proteins that are selectively expressed at tight junctions (TJs) of epithelial cells where they play a central role in regulating paracellular permeability of solutes across epithelia. However, the role of claudins in intercellular adhesion and the mechanism by which they regulate the d...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2008-01, Vol.24 (2), p.490-495
Main Authors: Lim, Tong Seng, Vedula, Sri Ram Krishna, Kausalya, P. Jaya, Hunziker, Walter, Lim, Chwee Teck
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a381t-2473063fa5b7709e3e1afa7f89a420d002660222ef3ddf697f4c8a36c87778aa3
cites cdi_FETCH-LOGICAL-a381t-2473063fa5b7709e3e1afa7f89a420d002660222ef3ddf697f4c8a36c87778aa3
container_end_page 495
container_issue 2
container_start_page 490
container_title Langmuir
container_volume 24
creator Lim, Tong Seng
Vedula, Sri Ram Krishna
Kausalya, P. Jaya
Hunziker, Walter
Lim, Chwee Teck
description Claudins are proteins that are selectively expressed at tight junctions (TJs) of epithelial cells where they play a central role in regulating paracellular permeability of solutes across epithelia. However, the role of claudins in intercellular adhesion and the mechanism by which they regulate the diffusion of solutes are poorly understood. Here, using single molecule force spectroscopy, the kinetic properties and adhesion strength of homophilic claudin-1 interactions were probed at the single-molecule level. Within the range of tested loading rates (103−105 pN/s), our results showed that homophilic claudin-1 interactions have a reactive compliance of 0.363 ± 0.061 nm and an unstressed dissociation rate of 1.351 ± 1.312 s-1. This is more than 100-fold greater than that of E-cadherin. The weak and short-lived interactions between claudin-1 molecules make them highly unstable and dynamic in nature. Such a dynamic interaction is consistent with a model where breaking and resealing of TJ strands regulate the paracellular diffusion of solutes.
doi_str_mv 10.1021/la702436x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70191294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70191294</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-2473063fa5b7709e3e1afa7f89a420d002660222ef3ddf697f4c8a36c87778aa3</originalsourceid><addsrcrecordid>eNpt0M1uEzEUhmELgWgoLHoDVTYgsTA9_hl7LFYlQEFKVaSELrqxTsfH7RRnptgzqL17BiVqNqy88KNPRy9jRwI-CJDiJKEFqZV5eMZmopLAq1ra52wGVitutVEH7FUpdwDglHYv2YGowVVWyhn7uGq7m0T8vE_UjAkzX9IfSvPVMIbHeR_ni4RjaDsu-DmFFgcK89NwS6Xtu9fsRcRU6M3uPWQ_v35ZL77x5cXZ98XpkqOqxcCltgqMilhdWwuOFAmMaGPtUEsIANIYkFJSVCFE42zUTY3KNLW1tkZUh-zddvc-979HKoPftKWhlLCjfizegnBCOj3B91vY5L6UTNHf53aD-dEL8P9K-adSkz3ejY7XGwp7uUszgbc7gKXBFDN2TVv2zrkapDKT41vXloEenv4x__LGKlv59Y-Vv9Sfrj4v1saf7XexKf6uH3M3tfvPgX8BXk6JfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70191294</pqid></control><display><type>article</type><title>Single-Molecular-Level Study of Claudin-1-Mediated Adhesion</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lim, Tong Seng ; Vedula, Sri Ram Krishna ; Kausalya, P. Jaya ; Hunziker, Walter ; Lim, Chwee Teck</creator><creatorcontrib>Lim, Tong Seng ; Vedula, Sri Ram Krishna ; Kausalya, P. Jaya ; Hunziker, Walter ; Lim, Chwee Teck</creatorcontrib><description>Claudins are proteins that are selectively expressed at tight junctions (TJs) of epithelial cells where they play a central role in regulating paracellular permeability of solutes across epithelia. However, the role of claudins in intercellular adhesion and the mechanism by which they regulate the diffusion of solutes are poorly understood. Here, using single molecule force spectroscopy, the kinetic properties and adhesion strength of homophilic claudin-1 interactions were probed at the single-molecule level. Within the range of tested loading rates (103−105 pN/s), our results showed that homophilic claudin-1 interactions have a reactive compliance of 0.363 ± 0.061 nm and an unstressed dissociation rate of 1.351 ± 1.312 s-1. This is more than 100-fold greater than that of E-cadherin. The weak and short-lived interactions between claudin-1 molecules make them highly unstable and dynamic in nature. Such a dynamic interaction is consistent with a model where breaking and resealing of TJ strands regulate the paracellular diffusion of solutes.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la702436x</identifier><identifier>PMID: 18095722</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Cell Adhesion - physiology ; Chemistry ; Claudin-1 ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Kinetics ; Membrane Proteins - physiology ; Microscopy, Atomic Force ; Monte Carlo Method ; Surface physical chemistry</subject><ispartof>Langmuir, 2008-01, Vol.24 (2), p.490-495</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-2473063fa5b7709e3e1afa7f89a420d002660222ef3ddf697f4c8a36c87778aa3</citedby><cites>FETCH-LOGICAL-a381t-2473063fa5b7709e3e1afa7f89a420d002660222ef3ddf697f4c8a36c87778aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19980236$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18095722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Tong Seng</creatorcontrib><creatorcontrib>Vedula, Sri Ram Krishna</creatorcontrib><creatorcontrib>Kausalya, P. Jaya</creatorcontrib><creatorcontrib>Hunziker, Walter</creatorcontrib><creatorcontrib>Lim, Chwee Teck</creatorcontrib><title>Single-Molecular-Level Study of Claudin-1-Mediated Adhesion</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Claudins are proteins that are selectively expressed at tight junctions (TJs) of epithelial cells where they play a central role in regulating paracellular permeability of solutes across epithelia. However, the role of claudins in intercellular adhesion and the mechanism by which they regulate the diffusion of solutes are poorly understood. Here, using single molecule force spectroscopy, the kinetic properties and adhesion strength of homophilic claudin-1 interactions were probed at the single-molecule level. Within the range of tested loading rates (103−105 pN/s), our results showed that homophilic claudin-1 interactions have a reactive compliance of 0.363 ± 0.061 nm and an unstressed dissociation rate of 1.351 ± 1.312 s-1. This is more than 100-fold greater than that of E-cadherin. The weak and short-lived interactions between claudin-1 molecules make them highly unstable and dynamic in nature. Such a dynamic interaction is consistent with a model where breaking and resealing of TJ strands regulate the paracellular diffusion of solutes.</description><subject>Cell Adhesion - physiology</subject><subject>Chemistry</subject><subject>Claudin-1</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Kinetics</subject><subject>Membrane Proteins - physiology</subject><subject>Microscopy, Atomic Force</subject><subject>Monte Carlo Method</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpt0M1uEzEUhmELgWgoLHoDVTYgsTA9_hl7LFYlQEFKVaSELrqxTsfH7RRnptgzqL17BiVqNqy88KNPRy9jRwI-CJDiJKEFqZV5eMZmopLAq1ra52wGVitutVEH7FUpdwDglHYv2YGowVVWyhn7uGq7m0T8vE_UjAkzX9IfSvPVMIbHeR_ni4RjaDsu-DmFFgcK89NwS6Xtu9fsRcRU6M3uPWQ_v35ZL77x5cXZ98XpkqOqxcCltgqMilhdWwuOFAmMaGPtUEsIANIYkFJSVCFE42zUTY3KNLW1tkZUh-zddvc-979HKoPftKWhlLCjfizegnBCOj3B91vY5L6UTNHf53aD-dEL8P9K-adSkz3ejY7XGwp7uUszgbc7gKXBFDN2TVv2zrkapDKT41vXloEenv4x__LGKlv59Y-Vv9Sfrj4v1saf7XexKf6uH3M3tfvPgX8BXk6JfA</recordid><startdate>20080115</startdate><enddate>20080115</enddate><creator>Lim, Tong Seng</creator><creator>Vedula, Sri Ram Krishna</creator><creator>Kausalya, P. Jaya</creator><creator>Hunziker, Walter</creator><creator>Lim, Chwee Teck</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080115</creationdate><title>Single-Molecular-Level Study of Claudin-1-Mediated Adhesion</title><author>Lim, Tong Seng ; Vedula, Sri Ram Krishna ; Kausalya, P. Jaya ; Hunziker, Walter ; Lim, Chwee Teck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-2473063fa5b7709e3e1afa7f89a420d002660222ef3ddf697f4c8a36c87778aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Cell Adhesion - physiology</topic><topic>Chemistry</topic><topic>Claudin-1</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Kinetics</topic><topic>Membrane Proteins - physiology</topic><topic>Microscopy, Atomic Force</topic><topic>Monte Carlo Method</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Tong Seng</creatorcontrib><creatorcontrib>Vedula, Sri Ram Krishna</creatorcontrib><creatorcontrib>Kausalya, P. Jaya</creatorcontrib><creatorcontrib>Hunziker, Walter</creatorcontrib><creatorcontrib>Lim, Chwee Teck</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Tong Seng</au><au>Vedula, Sri Ram Krishna</au><au>Kausalya, P. Jaya</au><au>Hunziker, Walter</au><au>Lim, Chwee Teck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Molecular-Level Study of Claudin-1-Mediated Adhesion</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2008-01-15</date><risdate>2008</risdate><volume>24</volume><issue>2</issue><spage>490</spage><epage>495</epage><pages>490-495</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Claudins are proteins that are selectively expressed at tight junctions (TJs) of epithelial cells where they play a central role in regulating paracellular permeability of solutes across epithelia. However, the role of claudins in intercellular adhesion and the mechanism by which they regulate the diffusion of solutes are poorly understood. Here, using single molecule force spectroscopy, the kinetic properties and adhesion strength of homophilic claudin-1 interactions were probed at the single-molecule level. Within the range of tested loading rates (103−105 pN/s), our results showed that homophilic claudin-1 interactions have a reactive compliance of 0.363 ± 0.061 nm and an unstressed dissociation rate of 1.351 ± 1.312 s-1. This is more than 100-fold greater than that of E-cadherin. The weak and short-lived interactions between claudin-1 molecules make them highly unstable and dynamic in nature. Such a dynamic interaction is consistent with a model where breaking and resealing of TJ strands regulate the paracellular diffusion of solutes.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18095722</pmid><doi>10.1021/la702436x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2008-01, Vol.24 (2), p.490-495
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_70191294
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Cell Adhesion - physiology
Chemistry
Claudin-1
Colloidal state and disperse state
Exact sciences and technology
General and physical chemistry
Kinetics
Membrane Proteins - physiology
Microscopy, Atomic Force
Monte Carlo Method
Surface physical chemistry
title Single-Molecular-Level Study of Claudin-1-Mediated Adhesion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Molecular-Level%20Study%20of%20Claudin-1-Mediated%20Adhesion&rft.jtitle=Langmuir&rft.au=Lim,%20Tong%20Seng&rft.date=2008-01-15&rft.volume=24&rft.issue=2&rft.spage=490&rft.epage=495&rft.pages=490-495&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la702436x&rft_dat=%3Cproquest_cross%3E70191294%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a381t-2473063fa5b7709e3e1afa7f89a420d002660222ef3ddf697f4c8a36c87778aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70191294&rft_id=info:pmid/18095722&rfr_iscdi=true