Loading…

Nonlinear model for mechanical ventilation of human lungs

A complex nonlinear model for mechanical ventilation, its computer implementation and validation are presented. The model includes the morphometry-based symmetrical structure of the 23 airway generations, dynamic properties of the respiratory system, as well as the description of a ventilator. Distr...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine 2006, Vol.36 (1), p.41-58
Main Authors: Polak, Adam G., Mroczka, Janusz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c496t-f4a980a66c4630e50f594657cb7fc3516ab47f51b53897182fc07fe1476ae4ea3
cites cdi_FETCH-LOGICAL-c496t-f4a980a66c4630e50f594657cb7fc3516ab47f51b53897182fc07fe1476ae4ea3
container_end_page 58
container_issue 1
container_start_page 41
container_title Computers in biology and medicine
container_volume 36
creator Polak, Adam G.
Mroczka, Janusz
description A complex nonlinear model for mechanical ventilation, its computer implementation and validation are presented. The model includes the morphometry-based symmetrical structure of the 23 airway generations, dynamic properties of the respiratory system, as well as the description of a ventilator. Distributed character of airway mechanical properties is taken into account when determining airway inertance, resistance and compliance, including turbulence of flow, airway collapsing and the wave speed theory. In effect, the airway parameters vary within the ventilatory cycle and their values are nonlinear functions of control signals. Results of simulations corresponding to normal conditions and airway narrowing are consistent with the published experimental data. The model enables investigations on how specific pathological changes influence the signals and physiological variables during mechanical ventilation, as well as testing known and developing new algorithms tracking time-variability of the respiratory parameters.
doi_str_mv 10.1016/j.compbiomed.2004.08.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70192895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001048250400112X</els_id><sourcerecordid>57607947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-f4a980a66c4630e50f594657cb7fc3516ab47f51b53897182fc07fe1476ae4ea3</originalsourceid><addsrcrecordid>eNqNkU1v2zAMhoVhxZKm-wuFT7vZo2x9Htdg3QYE3WU9C7JCLQpsKbXsAvv3dZBgPSYnEuRDvoeHkIJCRYGKr_vKpf7QhtTjtqoBWAWqAqAfyJIqqUvgDftIlvMESqZqviC3Oe9hBqGBT2RBRVMzDWpJ9FOKXYhoh6JPW-wKn-YO3c7G4GxXvGIcQ2fHkGKRfLGbehuLbop_8x258bbL-PlcV-T58fuf9c9y8_vHr_W3TemYFmPpmdUKrBCOiQaQg-eaCS5dK71rOBW2ZdJz2vJGaUlV7R1Ij5RJYZGhbVbky-nvYUgvE-bR9CE77DobMU3ZSKC6VppfBLkU9ZxMrwOZVNeAIDWTF0GqGYfTR3UC3ZByHtCbwxB6O_wzFMxRrdmbd7XmqNaAMrPI-fT-nDG1x93_w7PLGXg4ATjbeA04mOwCRofbMKAbzTaFyylvDBa4SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19450478</pqid></control><display><type>article</type><title>Nonlinear model for mechanical ventilation of human lungs</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>Elsevier</source><creator>Polak, Adam G. ; Mroczka, Janusz</creator><creatorcontrib>Polak, Adam G. ; Mroczka, Janusz</creatorcontrib><description>A complex nonlinear model for mechanical ventilation, its computer implementation and validation are presented. The model includes the morphometry-based symmetrical structure of the 23 airway generations, dynamic properties of the respiratory system, as well as the description of a ventilator. Distributed character of airway mechanical properties is taken into account when determining airway inertance, resistance and compliance, including turbulence of flow, airway collapsing and the wave speed theory. In effect, the airway parameters vary within the ventilatory cycle and their values are nonlinear functions of control signals. Results of simulations corresponding to normal conditions and airway narrowing are consistent with the published experimental data. The model enables investigations on how specific pathological changes influence the signals and physiological variables during mechanical ventilation, as well as testing known and developing new algorithms tracking time-variability of the respiratory parameters.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2004.08.001</identifier><identifier>PMID: 16324908</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Airway Resistance - physiology ; Asthma - physiopathology ; Bronchi - physiopathology ; Bronchoconstriction - physiology ; Computer applications ; Computer Simulation ; Health care ; Humans ; Lung Volume Measurements ; Lungs ; Mathematical models ; Mechanical ventilation ; Medicine ; Models, Biological ; Nonlinear Dynamics ; Nonlinear model ; Respiration, Artificial ; Respiratory mechanics</subject><ispartof>Computers in biology and medicine, 2006, Vol.36 (1), p.41-58</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-f4a980a66c4630e50f594657cb7fc3516ab47f51b53897182fc07fe1476ae4ea3</citedby><cites>FETCH-LOGICAL-c496t-f4a980a66c4630e50f594657cb7fc3516ab47f51b53897182fc07fe1476ae4ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925,34136</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16324908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Polak, Adam G.</creatorcontrib><creatorcontrib>Mroczka, Janusz</creatorcontrib><title>Nonlinear model for mechanical ventilation of human lungs</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>A complex nonlinear model for mechanical ventilation, its computer implementation and validation are presented. The model includes the morphometry-based symmetrical structure of the 23 airway generations, dynamic properties of the respiratory system, as well as the description of a ventilator. Distributed character of airway mechanical properties is taken into account when determining airway inertance, resistance and compliance, including turbulence of flow, airway collapsing and the wave speed theory. In effect, the airway parameters vary within the ventilatory cycle and their values are nonlinear functions of control signals. Results of simulations corresponding to normal conditions and airway narrowing are consistent with the published experimental data. The model enables investigations on how specific pathological changes influence the signals and physiological variables during mechanical ventilation, as well as testing known and developing new algorithms tracking time-variability of the respiratory parameters.</description><subject>Airway Resistance - physiology</subject><subject>Asthma - physiopathology</subject><subject>Bronchi - physiopathology</subject><subject>Bronchoconstriction - physiology</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Health care</subject><subject>Humans</subject><subject>Lung Volume Measurements</subject><subject>Lungs</subject><subject>Mathematical models</subject><subject>Mechanical ventilation</subject><subject>Medicine</subject><subject>Models, Biological</subject><subject>Nonlinear Dynamics</subject><subject>Nonlinear model</subject><subject>Respiration, Artificial</subject><subject>Respiratory mechanics</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNqNkU1v2zAMhoVhxZKm-wuFT7vZo2x9Htdg3QYE3WU9C7JCLQpsKbXsAvv3dZBgPSYnEuRDvoeHkIJCRYGKr_vKpf7QhtTjtqoBWAWqAqAfyJIqqUvgDftIlvMESqZqviC3Oe9hBqGBT2RBRVMzDWpJ9FOKXYhoh6JPW-wKn-YO3c7G4GxXvGIcQ2fHkGKRfLGbehuLbop_8x258bbL-PlcV-T58fuf9c9y8_vHr_W3TemYFmPpmdUKrBCOiQaQg-eaCS5dK71rOBW2ZdJz2vJGaUlV7R1Ij5RJYZGhbVbky-nvYUgvE-bR9CE77DobMU3ZSKC6VppfBLkU9ZxMrwOZVNeAIDWTF0GqGYfTR3UC3ZByHtCbwxB6O_wzFMxRrdmbd7XmqNaAMrPI-fT-nDG1x93_w7PLGXg4ATjbeA04mOwCRofbMKAbzTaFyylvDBa4SQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Polak, Adam G.</creator><creator>Mroczka, Janusz</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>E3H</scope><scope>F2A</scope><scope>7X8</scope></search><sort><creationdate>2006</creationdate><title>Nonlinear model for mechanical ventilation of human lungs</title><author>Polak, Adam G. ; Mroczka, Janusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-f4a980a66c4630e50f594657cb7fc3516ab47f51b53897182fc07fe1476ae4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Airway Resistance - physiology</topic><topic>Asthma - physiopathology</topic><topic>Bronchi - physiopathology</topic><topic>Bronchoconstriction - physiology</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Health care</topic><topic>Humans</topic><topic>Lung Volume Measurements</topic><topic>Lungs</topic><topic>Mathematical models</topic><topic>Mechanical ventilation</topic><topic>Medicine</topic><topic>Models, Biological</topic><topic>Nonlinear Dynamics</topic><topic>Nonlinear model</topic><topic>Respiration, Artificial</topic><topic>Respiratory mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polak, Adam G.</creatorcontrib><creatorcontrib>Mroczka, Janusz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polak, Adam G.</au><au>Mroczka, Janusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear model for mechanical ventilation of human lungs</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2006</date><risdate>2006</risdate><volume>36</volume><issue>1</issue><spage>41</spage><epage>58</epage><pages>41-58</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>A complex nonlinear model for mechanical ventilation, its computer implementation and validation are presented. The model includes the morphometry-based symmetrical structure of the 23 airway generations, dynamic properties of the respiratory system, as well as the description of a ventilator. Distributed character of airway mechanical properties is taken into account when determining airway inertance, resistance and compliance, including turbulence of flow, airway collapsing and the wave speed theory. In effect, the airway parameters vary within the ventilatory cycle and their values are nonlinear functions of control signals. Results of simulations corresponding to normal conditions and airway narrowing are consistent with the published experimental data. The model enables investigations on how specific pathological changes influence the signals and physiological variables during mechanical ventilation, as well as testing known and developing new algorithms tracking time-variability of the respiratory parameters.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>16324908</pmid><doi>10.1016/j.compbiomed.2004.08.001</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2006, Vol.36 (1), p.41-58
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_70192895
source Library & Information Science Abstracts (LISA); Elsevier
subjects Airway Resistance - physiology
Asthma - physiopathology
Bronchi - physiopathology
Bronchoconstriction - physiology
Computer applications
Computer Simulation
Health care
Humans
Lung Volume Measurements
Lungs
Mathematical models
Mechanical ventilation
Medicine
Models, Biological
Nonlinear Dynamics
Nonlinear model
Respiration, Artificial
Respiratory mechanics
title Nonlinear model for mechanical ventilation of human lungs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20model%20for%20mechanical%20ventilation%20of%20human%20lungs&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Polak,%20Adam%20G.&rft.date=2006&rft.volume=36&rft.issue=1&rft.spage=41&rft.epage=58&rft.pages=41-58&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2004.08.001&rft_dat=%3Cproquest_cross%3E57607947%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-f4a980a66c4630e50f594657cb7fc3516ab47f51b53897182fc07fe1476ae4ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19450478&rft_id=info:pmid/16324908&rfr_iscdi=true