Loading…
THE GEOGRAPHICAL MOSAIC OF COEVOLUTION IN A PLANT–POLLINATOR MUTUALISM
Although coevolution is widely accepted as a concept, its importance as a driving factor in biological diversification is still being debated. Because coevolution operates mainly at the population level, reciprocal coadaptations should result in trait covariation among populations of strongly intera...
Saved in:
Published in: | Evolution 2008-01, Vol.62 (1), p.220-225 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b5165-2a10510cd5e7a7cd7d256de68d586a79fd24e01143b01c98035e4109cd58f0793 |
---|---|
cites | |
container_end_page | 225 |
container_issue | 1 |
container_start_page | 220 |
container_title | Evolution |
container_volume | 62 |
creator | Anderson, Bruce Johnson, Steven D. |
description | Although coevolution is widely accepted as a concept, its importance as a driving factor in biological diversification is still being debated. Because coevolution operates mainly at the population level, reciprocal coadaptations should result in trait covariation among populations of strongly interacting species. A long-tongued fly (Prosoeca ganglbaueri) and its primary floral food plant (Zaluzianskya microsiphon) were studied across both of their geographical ranges. The dimensions of the fly's proboscis and the flower's corolla tube length varied significantly among sites and were strongly correlated with each other. In addition, the match between tube length of flowers and tongue length of flies was found to affect plant fitness. The relationship between flower tube length and fly proboscis length remained significant in models that included various alternative environmental (altitude, longitude, latitude) and allometric (fly body size, flower diameter) predictor variables. We conclude that coevolution is a compelling explanation for the geographical covariation in flower depth and fly proboscis length. |
doi_str_mv | 10.1111/j.1558-5646.2007.00275.x |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70195794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4627129</jstor_id><sourcerecordid>4627129</sourcerecordid><originalsourceid>FETCH-LOGICAL-b5165-2a10510cd5e7a7cd7d256de68d586a79fd24e01143b01c98035e4109cd58f0793</originalsourceid><addsrcrecordid>eNqNkdFO2zAUhq1paBTYG0yTtQvukh07sZ1I3ISqNJHSuGvTjjsrbVwpoW0gabVyt3fgDXmSOQSKxNV8Y0v_959z_B-EMAGbmPOztAljnsW4y20KIGwAKph9-IR6R-Ez6gEQ13I8CqforGlKAPAZ8b-gU-IBF0xAD4VpOMDDgRxOgnEY9YMYj-Q0iPpY3uC-HMxlPEsjmeAowQEex0GSPv99Gss4jpIglRM8mqWzII6mowt0ssrWjf76ep-j2c0g7YdWLIdtXWvBCGcWzQgwAsucaZGJZS5yyniuuZczj2fCX-XU1UCI6yyALH0PHKZdAr4xeCsQvnOOLru693X1sNfNTm2KZqnX62yrq32jBBCfCd814I8PYFnt662ZTVEqwOXUaaHvr9B-sdG5uq-LTVY_qreADHDVAX-KtX5810G1i1ClavNWbd6qXYR6WYQ6KJOceRj7t85eNruqPtpNc0Fo-xmrk4tmpw9HOavvFBeOKfQ7Gar5dPwrvOW36trwvOMXRVVt9X-P4_wDRP6czA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227046234</pqid></control><display><type>article</type><title>THE GEOGRAPHICAL MOSAIC OF COEVOLUTION IN A PLANT–POLLINATOR MUTUALISM</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Anderson, Bruce ; Johnson, Steven D.</creator><contributor>Kohn, J</contributor><creatorcontrib>Anderson, Bruce ; Johnson, Steven D. ; Kohn, J</creatorcontrib><description>Although coevolution is widely accepted as a concept, its importance as a driving factor in biological diversification is still being debated. Because coevolution operates mainly at the population level, reciprocal coadaptations should result in trait covariation among populations of strongly interacting species. A long-tongued fly (Prosoeca ganglbaueri) and its primary floral food plant (Zaluzianskya microsiphon) were studied across both of their geographical ranges. The dimensions of the fly's proboscis and the flower's corolla tube length varied significantly among sites and were strongly correlated with each other. In addition, the match between tube length of flowers and tongue length of flies was found to affect plant fitness. The relationship between flower tube length and fly proboscis length remained significant in models that included various alternative environmental (altitude, longitude, latitude) and allometric (fly body size, flower diameter) predictor variables. We conclude that coevolution is a compelling explanation for the geographical covariation in flower depth and fly proboscis length.</description><identifier>ISSN: 0014-3820</identifier><identifier>EISSN: 1558-5646</identifier><identifier>DOI: 10.1111/j.1558-5646.2007.00275.x</identifier><identifier>PMID: 18067570</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Adaptation ; Animals ; Biodiversity ; Biological Evolution ; Botany ; Brief Communication ; BRIEF COMMUNICATIONS ; Coevolution ; Corolla ; Demography ; Diptera - anatomy & histology ; Diptera - genetics ; Diptera - physiology ; Evolution ; Flowers ; Flowers - anatomy & histology ; Flowers - genetics ; Flowers - physiology ; Genetics ; Geography ; Insects ; long-proboscid fly ; Mutualism ; natural selection ; pairwise coevolution ; Phenotypic traits ; Plants ; Pollinating insects ; pollination ; Population characteristics ; Proboscis ; Symbiosis</subject><ispartof>Evolution, 2008-01, Vol.62 (1), p.220-225</ispartof><rights>2007 The Author(s). Journal compilation © 2007 The Society for the Study of Evolution</rights><rights>Copyright 2007 The Society for the Study of Evolution</rights><rights>Copyright Society for the Study of Evolution Jan 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b5165-2a10510cd5e7a7cd7d256de68d586a79fd24e01143b01c98035e4109cd58f0793</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4627129$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4627129$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,58221,58454</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18067570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kohn, J</contributor><creatorcontrib>Anderson, Bruce</creatorcontrib><creatorcontrib>Johnson, Steven D.</creatorcontrib><title>THE GEOGRAPHICAL MOSAIC OF COEVOLUTION IN A PLANT–POLLINATOR MUTUALISM</title><title>Evolution</title><addtitle>Evolution</addtitle><description>Although coevolution is widely accepted as a concept, its importance as a driving factor in biological diversification is still being debated. Because coevolution operates mainly at the population level, reciprocal coadaptations should result in trait covariation among populations of strongly interacting species. A long-tongued fly (Prosoeca ganglbaueri) and its primary floral food plant (Zaluzianskya microsiphon) were studied across both of their geographical ranges. The dimensions of the fly's proboscis and the flower's corolla tube length varied significantly among sites and were strongly correlated with each other. In addition, the match between tube length of flowers and tongue length of flies was found to affect plant fitness. The relationship between flower tube length and fly proboscis length remained significant in models that included various alternative environmental (altitude, longitude, latitude) and allometric (fly body size, flower diameter) predictor variables. We conclude that coevolution is a compelling explanation for the geographical covariation in flower depth and fly proboscis length.</description><subject>Adaptation</subject><subject>Animals</subject><subject>Biodiversity</subject><subject>Biological Evolution</subject><subject>Botany</subject><subject>Brief Communication</subject><subject>BRIEF COMMUNICATIONS</subject><subject>Coevolution</subject><subject>Corolla</subject><subject>Demography</subject><subject>Diptera - anatomy & histology</subject><subject>Diptera - genetics</subject><subject>Diptera - physiology</subject><subject>Evolution</subject><subject>Flowers</subject><subject>Flowers - anatomy & histology</subject><subject>Flowers - genetics</subject><subject>Flowers - physiology</subject><subject>Genetics</subject><subject>Geography</subject><subject>Insects</subject><subject>long-proboscid fly</subject><subject>Mutualism</subject><subject>natural selection</subject><subject>pairwise coevolution</subject><subject>Phenotypic traits</subject><subject>Plants</subject><subject>Pollinating insects</subject><subject>pollination</subject><subject>Population characteristics</subject><subject>Proboscis</subject><subject>Symbiosis</subject><issn>0014-3820</issn><issn>1558-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkdFO2zAUhq1paBTYG0yTtQvukh07sZ1I3ISqNJHSuGvTjjsrbVwpoW0gabVyt3fgDXmSOQSKxNV8Y0v_959z_B-EMAGbmPOztAljnsW4y20KIGwAKph9-IR6R-Ez6gEQ13I8CqforGlKAPAZ8b-gU-IBF0xAD4VpOMDDgRxOgnEY9YMYj-Q0iPpY3uC-HMxlPEsjmeAowQEex0GSPv99Gss4jpIglRM8mqWzII6mowt0ssrWjf76ep-j2c0g7YdWLIdtXWvBCGcWzQgwAsucaZGJZS5yyniuuZczj2fCX-XU1UCI6yyALH0PHKZdAr4xeCsQvnOOLru693X1sNfNTm2KZqnX62yrq32jBBCfCd814I8PYFnt662ZTVEqwOXUaaHvr9B-sdG5uq-LTVY_qreADHDVAX-KtX5810G1i1ClavNWbd6qXYR6WYQ6KJOceRj7t85eNruqPtpNc0Fo-xmrk4tmpw9HOavvFBeOKfQ7Gar5dPwrvOW36trwvOMXRVVt9X-P4_wDRP6czA</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Anderson, Bruce</creator><creator>Johnson, Steven D.</creator><general>Blackwell Publishing Inc</general><general>Society for the Study of Evolution</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200801</creationdate><title>THE GEOGRAPHICAL MOSAIC OF COEVOLUTION IN A PLANT–POLLINATOR MUTUALISM</title><author>Anderson, Bruce ; Johnson, Steven D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b5165-2a10510cd5e7a7cd7d256de68d586a79fd24e01143b01c98035e4109cd58f0793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptation</topic><topic>Animals</topic><topic>Biodiversity</topic><topic>Biological Evolution</topic><topic>Botany</topic><topic>Brief Communication</topic><topic>BRIEF COMMUNICATIONS</topic><topic>Coevolution</topic><topic>Corolla</topic><topic>Demography</topic><topic>Diptera - anatomy & histology</topic><topic>Diptera - genetics</topic><topic>Diptera - physiology</topic><topic>Evolution</topic><topic>Flowers</topic><topic>Flowers - anatomy & histology</topic><topic>Flowers - genetics</topic><topic>Flowers - physiology</topic><topic>Genetics</topic><topic>Geography</topic><topic>Insects</topic><topic>long-proboscid fly</topic><topic>Mutualism</topic><topic>natural selection</topic><topic>pairwise coevolution</topic><topic>Phenotypic traits</topic><topic>Plants</topic><topic>Pollinating insects</topic><topic>pollination</topic><topic>Population characteristics</topic><topic>Proboscis</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Bruce</creatorcontrib><creatorcontrib>Johnson, Steven D.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Bruce</au><au>Johnson, Steven D.</au><au>Kohn, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE GEOGRAPHICAL MOSAIC OF COEVOLUTION IN A PLANT–POLLINATOR MUTUALISM</atitle><jtitle>Evolution</jtitle><addtitle>Evolution</addtitle><date>2008-01</date><risdate>2008</risdate><volume>62</volume><issue>1</issue><spage>220</spage><epage>225</epage><pages>220-225</pages><issn>0014-3820</issn><eissn>1558-5646</eissn><abstract>Although coevolution is widely accepted as a concept, its importance as a driving factor in biological diversification is still being debated. Because coevolution operates mainly at the population level, reciprocal coadaptations should result in trait covariation among populations of strongly interacting species. A long-tongued fly (Prosoeca ganglbaueri) and its primary floral food plant (Zaluzianskya microsiphon) were studied across both of their geographical ranges. The dimensions of the fly's proboscis and the flower's corolla tube length varied significantly among sites and were strongly correlated with each other. In addition, the match between tube length of flowers and tongue length of flies was found to affect plant fitness. The relationship between flower tube length and fly proboscis length remained significant in models that included various alternative environmental (altitude, longitude, latitude) and allometric (fly body size, flower diameter) predictor variables. We conclude that coevolution is a compelling explanation for the geographical covariation in flower depth and fly proboscis length.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>18067570</pmid><doi>10.1111/j.1558-5646.2007.00275.x</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-3820 |
ispartof | Evolution, 2008-01, Vol.62 (1), p.220-225 |
issn | 0014-3820 1558-5646 |
language | eng |
recordid | cdi_proquest_miscellaneous_70195794 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Adaptation Animals Biodiversity Biological Evolution Botany Brief Communication BRIEF COMMUNICATIONS Coevolution Corolla Demography Diptera - anatomy & histology Diptera - genetics Diptera - physiology Evolution Flowers Flowers - anatomy & histology Flowers - genetics Flowers - physiology Genetics Geography Insects long-proboscid fly Mutualism natural selection pairwise coevolution Phenotypic traits Plants Pollinating insects pollination Population characteristics Proboscis Symbiosis |
title | THE GEOGRAPHICAL MOSAIC OF COEVOLUTION IN A PLANT–POLLINATOR MUTUALISM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20GEOGRAPHICAL%20MOSAIC%20OF%20COEVOLUTION%20IN%20A%20PLANT%E2%80%93POLLINATOR%20MUTUALISM&rft.jtitle=Evolution&rft.au=Anderson,%20Bruce&rft.date=2008-01&rft.volume=62&rft.issue=1&rft.spage=220&rft.epage=225&rft.pages=220-225&rft.issn=0014-3820&rft.eissn=1558-5646&rft_id=info:doi/10.1111/j.1558-5646.2007.00275.x&rft_dat=%3Cjstor_proqu%3E4627129%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b5165-2a10510cd5e7a7cd7d256de68d586a79fd24e01143b01c98035e4109cd58f0793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=227046234&rft_id=info:pmid/18067570&rft_jstor_id=4627129&rfr_iscdi=true |