Loading…

THE GEOGRAPHICAL MOSAIC OF COEVOLUTION IN A PLANT–POLLINATOR MUTUALISM

Although coevolution is widely accepted as a concept, its importance as a driving factor in biological diversification is still being debated. Because coevolution operates mainly at the population level, reciprocal coadaptations should result in trait covariation among populations of strongly intera...

Full description

Saved in:
Bibliographic Details
Published in:Evolution 2008-01, Vol.62 (1), p.220-225
Main Authors: Anderson, Bruce, Johnson, Steven D.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b5165-2a10510cd5e7a7cd7d256de68d586a79fd24e01143b01c98035e4109cd58f0793
cites
container_end_page 225
container_issue 1
container_start_page 220
container_title Evolution
container_volume 62
creator Anderson, Bruce
Johnson, Steven D.
description Although coevolution is widely accepted as a concept, its importance as a driving factor in biological diversification is still being debated. Because coevolution operates mainly at the population level, reciprocal coadaptations should result in trait covariation among populations of strongly interacting species. A long-tongued fly (Prosoeca ganglbaueri) and its primary floral food plant (Zaluzianskya microsiphon) were studied across both of their geographical ranges. The dimensions of the fly's proboscis and the flower's corolla tube length varied significantly among sites and were strongly correlated with each other. In addition, the match between tube length of flowers and tongue length of flies was found to affect plant fitness. The relationship between flower tube length and fly proboscis length remained significant in models that included various alternative environmental (altitude, longitude, latitude) and allometric (fly body size, flower diameter) predictor variables. We conclude that coevolution is a compelling explanation for the geographical covariation in flower depth and fly proboscis length.
doi_str_mv 10.1111/j.1558-5646.2007.00275.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70195794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4627129</jstor_id><sourcerecordid>4627129</sourcerecordid><originalsourceid>FETCH-LOGICAL-b5165-2a10510cd5e7a7cd7d256de68d586a79fd24e01143b01c98035e4109cd58f0793</originalsourceid><addsrcrecordid>eNqNkdFO2zAUhq1paBTYG0yTtQvukh07sZ1I3ISqNJHSuGvTjjsrbVwpoW0gabVyt3fgDXmSOQSKxNV8Y0v_959z_B-EMAGbmPOztAljnsW4y20KIGwAKph9-IR6R-Ez6gEQ13I8CqforGlKAPAZ8b-gU-IBF0xAD4VpOMDDgRxOgnEY9YMYj-Q0iPpY3uC-HMxlPEsjmeAowQEex0GSPv99Gss4jpIglRM8mqWzII6mowt0ssrWjf76ep-j2c0g7YdWLIdtXWvBCGcWzQgwAsucaZGJZS5yyniuuZczj2fCX-XU1UCI6yyALH0PHKZdAr4xeCsQvnOOLru693X1sNfNTm2KZqnX62yrq32jBBCfCd814I8PYFnt662ZTVEqwOXUaaHvr9B-sdG5uq-LTVY_qreADHDVAX-KtX5810G1i1ClavNWbd6qXYR6WYQ6KJOceRj7t85eNruqPtpNc0Fo-xmrk4tmpw9HOavvFBeOKfQ7Gar5dPwrvOW36trwvOMXRVVt9X-P4_wDRP6czA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227046234</pqid></control><display><type>article</type><title>THE GEOGRAPHICAL MOSAIC OF COEVOLUTION IN A PLANT–POLLINATOR MUTUALISM</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Anderson, Bruce ; Johnson, Steven D.</creator><contributor>Kohn, J</contributor><creatorcontrib>Anderson, Bruce ; Johnson, Steven D. ; Kohn, J</creatorcontrib><description>Although coevolution is widely accepted as a concept, its importance as a driving factor in biological diversification is still being debated. Because coevolution operates mainly at the population level, reciprocal coadaptations should result in trait covariation among populations of strongly interacting species. A long-tongued fly (Prosoeca ganglbaueri) and its primary floral food plant (Zaluzianskya microsiphon) were studied across both of their geographical ranges. The dimensions of the fly's proboscis and the flower's corolla tube length varied significantly among sites and were strongly correlated with each other. In addition, the match between tube length of flowers and tongue length of flies was found to affect plant fitness. The relationship between flower tube length and fly proboscis length remained significant in models that included various alternative environmental (altitude, longitude, latitude) and allometric (fly body size, flower diameter) predictor variables. We conclude that coevolution is a compelling explanation for the geographical covariation in flower depth and fly proboscis length.</description><identifier>ISSN: 0014-3820</identifier><identifier>EISSN: 1558-5646</identifier><identifier>DOI: 10.1111/j.1558-5646.2007.00275.x</identifier><identifier>PMID: 18067570</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Adaptation ; Animals ; Biodiversity ; Biological Evolution ; Botany ; Brief Communication ; BRIEF COMMUNICATIONS ; Coevolution ; Corolla ; Demography ; Diptera - anatomy &amp; histology ; Diptera - genetics ; Diptera - physiology ; Evolution ; Flowers ; Flowers - anatomy &amp; histology ; Flowers - genetics ; Flowers - physiology ; Genetics ; Geography ; Insects ; long-proboscid fly ; Mutualism ; natural selection ; pairwise coevolution ; Phenotypic traits ; Plants ; Pollinating insects ; pollination ; Population characteristics ; Proboscis ; Symbiosis</subject><ispartof>Evolution, 2008-01, Vol.62 (1), p.220-225</ispartof><rights>2007 The Author(s). Journal compilation © 2007 The Society for the Study of Evolution</rights><rights>Copyright 2007 The Society for the Study of Evolution</rights><rights>Copyright Society for the Study of Evolution Jan 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b5165-2a10510cd5e7a7cd7d256de68d586a79fd24e01143b01c98035e4109cd58f0793</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4627129$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4627129$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,58221,58454</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18067570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kohn, J</contributor><creatorcontrib>Anderson, Bruce</creatorcontrib><creatorcontrib>Johnson, Steven D.</creatorcontrib><title>THE GEOGRAPHICAL MOSAIC OF COEVOLUTION IN A PLANT–POLLINATOR MUTUALISM</title><title>Evolution</title><addtitle>Evolution</addtitle><description>Although coevolution is widely accepted as a concept, its importance as a driving factor in biological diversification is still being debated. Because coevolution operates mainly at the population level, reciprocal coadaptations should result in trait covariation among populations of strongly interacting species. A long-tongued fly (Prosoeca ganglbaueri) and its primary floral food plant (Zaluzianskya microsiphon) were studied across both of their geographical ranges. The dimensions of the fly's proboscis and the flower's corolla tube length varied significantly among sites and were strongly correlated with each other. In addition, the match between tube length of flowers and tongue length of flies was found to affect plant fitness. The relationship between flower tube length and fly proboscis length remained significant in models that included various alternative environmental (altitude, longitude, latitude) and allometric (fly body size, flower diameter) predictor variables. We conclude that coevolution is a compelling explanation for the geographical covariation in flower depth and fly proboscis length.</description><subject>Adaptation</subject><subject>Animals</subject><subject>Biodiversity</subject><subject>Biological Evolution</subject><subject>Botany</subject><subject>Brief Communication</subject><subject>BRIEF COMMUNICATIONS</subject><subject>Coevolution</subject><subject>Corolla</subject><subject>Demography</subject><subject>Diptera - anatomy &amp; histology</subject><subject>Diptera - genetics</subject><subject>Diptera - physiology</subject><subject>Evolution</subject><subject>Flowers</subject><subject>Flowers - anatomy &amp; histology</subject><subject>Flowers - genetics</subject><subject>Flowers - physiology</subject><subject>Genetics</subject><subject>Geography</subject><subject>Insects</subject><subject>long-proboscid fly</subject><subject>Mutualism</subject><subject>natural selection</subject><subject>pairwise coevolution</subject><subject>Phenotypic traits</subject><subject>Plants</subject><subject>Pollinating insects</subject><subject>pollination</subject><subject>Population characteristics</subject><subject>Proboscis</subject><subject>Symbiosis</subject><issn>0014-3820</issn><issn>1558-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkdFO2zAUhq1paBTYG0yTtQvukh07sZ1I3ISqNJHSuGvTjjsrbVwpoW0gabVyt3fgDXmSOQSKxNV8Y0v_959z_B-EMAGbmPOztAljnsW4y20KIGwAKph9-IR6R-Ez6gEQ13I8CqforGlKAPAZ8b-gU-IBF0xAD4VpOMDDgRxOgnEY9YMYj-Q0iPpY3uC-HMxlPEsjmeAowQEex0GSPv99Gss4jpIglRM8mqWzII6mowt0ssrWjf76ep-j2c0g7YdWLIdtXWvBCGcWzQgwAsucaZGJZS5yyniuuZczj2fCX-XU1UCI6yyALH0PHKZdAr4xeCsQvnOOLru693X1sNfNTm2KZqnX62yrq32jBBCfCd814I8PYFnt662ZTVEqwOXUaaHvr9B-sdG5uq-LTVY_qreADHDVAX-KtX5810G1i1ClavNWbd6qXYR6WYQ6KJOceRj7t85eNruqPtpNc0Fo-xmrk4tmpw9HOavvFBeOKfQ7Gar5dPwrvOW36trwvOMXRVVt9X-P4_wDRP6czA</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Anderson, Bruce</creator><creator>Johnson, Steven D.</creator><general>Blackwell Publishing Inc</general><general>Society for the Study of Evolution</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200801</creationdate><title>THE GEOGRAPHICAL MOSAIC OF COEVOLUTION IN A PLANT–POLLINATOR MUTUALISM</title><author>Anderson, Bruce ; Johnson, Steven D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b5165-2a10510cd5e7a7cd7d256de68d586a79fd24e01143b01c98035e4109cd58f0793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptation</topic><topic>Animals</topic><topic>Biodiversity</topic><topic>Biological Evolution</topic><topic>Botany</topic><topic>Brief Communication</topic><topic>BRIEF COMMUNICATIONS</topic><topic>Coevolution</topic><topic>Corolla</topic><topic>Demography</topic><topic>Diptera - anatomy &amp; histology</topic><topic>Diptera - genetics</topic><topic>Diptera - physiology</topic><topic>Evolution</topic><topic>Flowers</topic><topic>Flowers - anatomy &amp; histology</topic><topic>Flowers - genetics</topic><topic>Flowers - physiology</topic><topic>Genetics</topic><topic>Geography</topic><topic>Insects</topic><topic>long-proboscid fly</topic><topic>Mutualism</topic><topic>natural selection</topic><topic>pairwise coevolution</topic><topic>Phenotypic traits</topic><topic>Plants</topic><topic>Pollinating insects</topic><topic>pollination</topic><topic>Population characteristics</topic><topic>Proboscis</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Bruce</creatorcontrib><creatorcontrib>Johnson, Steven D.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Bruce</au><au>Johnson, Steven D.</au><au>Kohn, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE GEOGRAPHICAL MOSAIC OF COEVOLUTION IN A PLANT–POLLINATOR MUTUALISM</atitle><jtitle>Evolution</jtitle><addtitle>Evolution</addtitle><date>2008-01</date><risdate>2008</risdate><volume>62</volume><issue>1</issue><spage>220</spage><epage>225</epage><pages>220-225</pages><issn>0014-3820</issn><eissn>1558-5646</eissn><abstract>Although coevolution is widely accepted as a concept, its importance as a driving factor in biological diversification is still being debated. Because coevolution operates mainly at the population level, reciprocal coadaptations should result in trait covariation among populations of strongly interacting species. A long-tongued fly (Prosoeca ganglbaueri) and its primary floral food plant (Zaluzianskya microsiphon) were studied across both of their geographical ranges. The dimensions of the fly's proboscis and the flower's corolla tube length varied significantly among sites and were strongly correlated with each other. In addition, the match between tube length of flowers and tongue length of flies was found to affect plant fitness. The relationship between flower tube length and fly proboscis length remained significant in models that included various alternative environmental (altitude, longitude, latitude) and allometric (fly body size, flower diameter) predictor variables. We conclude that coevolution is a compelling explanation for the geographical covariation in flower depth and fly proboscis length.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>18067570</pmid><doi>10.1111/j.1558-5646.2007.00275.x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0014-3820
ispartof Evolution, 2008-01, Vol.62 (1), p.220-225
issn 0014-3820
1558-5646
language eng
recordid cdi_proquest_miscellaneous_70195794
source JSTOR Archival Journals and Primary Sources Collection
subjects Adaptation
Animals
Biodiversity
Biological Evolution
Botany
Brief Communication
BRIEF COMMUNICATIONS
Coevolution
Corolla
Demography
Diptera - anatomy & histology
Diptera - genetics
Diptera - physiology
Evolution
Flowers
Flowers - anatomy & histology
Flowers - genetics
Flowers - physiology
Genetics
Geography
Insects
long-proboscid fly
Mutualism
natural selection
pairwise coevolution
Phenotypic traits
Plants
Pollinating insects
pollination
Population characteristics
Proboscis
Symbiosis
title THE GEOGRAPHICAL MOSAIC OF COEVOLUTION IN A PLANT–POLLINATOR MUTUALISM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20GEOGRAPHICAL%20MOSAIC%20OF%20COEVOLUTION%20IN%20A%20PLANT%E2%80%93POLLINATOR%20MUTUALISM&rft.jtitle=Evolution&rft.au=Anderson,%20Bruce&rft.date=2008-01&rft.volume=62&rft.issue=1&rft.spage=220&rft.epage=225&rft.pages=220-225&rft.issn=0014-3820&rft.eissn=1558-5646&rft_id=info:doi/10.1111/j.1558-5646.2007.00275.x&rft_dat=%3Cjstor_proqu%3E4627129%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b5165-2a10510cd5e7a7cd7d256de68d586a79fd24e01143b01c98035e4109cd58f0793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=227046234&rft_id=info:pmid/18067570&rft_jstor_id=4627129&rfr_iscdi=true