Loading…

Disruption of lipid metabolism in the liver of the pregnant rat fed folate-deficient and methyl donor-deficient diets

The importance of folic acid and the methionine cycle in fetal development is well recognised even though the mechanism has not been established. Since the cycle is active in the maternal liver, poor folate status may modify hepatic metabolism. Pregnant rats were fed diets deficient in folic acid (–...

Full description

Saved in:
Bibliographic Details
Published in:British journal of nutrition 2008-02, Vol.99 (2), p.262-271
Main Authors: McNeil, Christopher J., Hay, Susan M., Rucklidge, Garry J., Reid, Martin, Duncan, Gary, Maloney, Christopher A., Rees, William D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The importance of folic acid and the methionine cycle in fetal development is well recognised even though the mechanism has not been established. Since the cycle is active in the maternal liver, poor folate status may modify hepatic metabolism. Pregnant rats were fed diets deficient in folic acid (–F) or in three key methyl donors, folic acid, choline and methionine (–FLMLC) and the maternal liver was analysed on day 21 of gestation. Two-dimensional gel electrophoresis of soluble proteins identified differentially abundant proteins, which could be allocated into nine functional groups. Five involved in metabolic processes, namely, folate/methionine cycle, tyrosine metabolism, protein metabolism, energy metabolism and lipid metabolism, and three in cellular processes, namely, endoplasmic reticulum function, bile production and antioxidant defence. The mRNA for sterol regulatory element-binding protein-1c and acetyl-CoA carboxylase-1 (fatty acid synthesis) were decreased by both –F and –FLMLC diets. The mRNA for PPARα and PPARγ and carnitine palmitoyl transferase (fatty acid oxidation) were increased in the animals fed the –FLMLC diets. Changes in the abundance of proteins associated with intracellular lipid transport suggest that folate deficiency interferes with lipid export. Reduced fatty acid synthesis appeared to prevent steatosis in animals fed the –F diet. Even with increased oxidation, TAG concentrations were approximately three-fold higher in animals fed the –FLMLC diet and were associated with an increase in the relative abundance of proteins associated with oxidative stress. Fetal development may be indirectly affected by these changes in hepatic lipid metabolism.
ISSN:0007-1145
1475-2662
DOI:10.1017/S0007114507798999