Loading…
Photoactivation of Channelrhodopsin
Channelrhodopsins (ChRs) are light-gated ion channels that control photomovement of microalgae. In optogenetics, ChRs are widely applied for light-triggering action potentials in cells, tissues, and living animals, yet the spectral properties and photocycle of ChR remain obscure. In this study, we c...
Saved in:
Published in: | The Journal of biological chemistry 2008-01, Vol.283 (3), p.1637-1643 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Channelrhodopsins (ChRs) are light-gated ion channels that control photomovement of microalgae. In optogenetics, ChRs are widely applied for light-triggering action potentials in cells, tissues, and living animals, yet the spectral properties and photocycle of ChR remain obscure. In this study, we cloned a ChR from the colonial alga Volvox carteri, VChR. After electrophysiological characterization in Xenopus oocytes, VChR was expressed in COS-1 cells and purified. Time-resolved UV-visible spectroscopy revealed a pH-dependent equilibrium of two dark species, D470/D480. Laser flashes converted both with τ ≈ 200 μs into major photointermediates P510/P530, which reverted back to the dark states with τ ≈ 15-100 ms. Both intermediates were assigned to conducting states. Three early intermediates P500/P515 and P390 were detected on a ns to μs time scale. The spectroscopic and electrical data were unified in a photocycle model. The functional expression of VChR we report here paves the way toward a broader structure/function analysis of the recently identified class of light-gated ion channels. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M708039200 |