Loading…

Photophysics and Nonlinear Optical Properties of Tetra- and Octabrominated Silicon Naphthalocyanines

The effect of the number of bromide substituents on the photophysical and nonlinear optical properties of the tetrabrominated naphthalocyanine Br4(tBu2PhO)4NcSi[OSi(Hex)3]2 (1) and the octabrominated naphthalocyanine Br8NcSi[OSi(Hex)3]2 (2) has been investigated through various spectroscopic techniq...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2008-01, Vol.112 (3), p.472-480
Main Authors: Li, Yunjing, Dini, Danilo, Calvete, Mario J. F, Hanack, Michael, Sun, Wenfang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of the number of bromide substituents on the photophysical and nonlinear optical properties of the tetrabrominated naphthalocyanine Br4(tBu2PhO)4NcSi[OSi(Hex)3]2 (1) and the octabrominated naphthalocyanine Br8NcSi[OSi(Hex)3]2 (2) has been investigated through various spectroscopic techniques. Absorption and emission of 1 and 2 have been studied at room temperature and 77 K to determine the spectral properties of the ground and the excited states and the lifetimes and quantum yields of formation of the excited states. There is a moderate increase of the quantum yield of the triplet excited-state formation (ΦT = 0.10 vs 0.13) and a decrease of the triplet excited-state lifetime (τT ≈ 70 vs 50 μs) from 1 to 2. These can be attributed to the stronger heavy atom effect produced by the larger number of peripheral bromide substituents in 2 considering that an excited state with a triplet manifold is involved in the excitation dynamics of both complexes 1 and 2. The quantum yields of the singlet oxygen formation (ΦΔ) upon irradiation of 1 and 2 at 355 nm were also evaluated, and a value of ΦΔ(1) = ΦΔ(2) = 0.16 was obtained. In addition to that, octabrominated complex 2 displays a larger decrease of nonlinear optical transmission for nanosecond pulses at 532 nm with respect to the tetrabrominated complex 1. The nanosecond Z-scan experiments reveal that 1 and 2 exhibit both a reverse saturable absorption and a nonlinear refraction at 532 nm. However, both the sign and the magnitude of the nonlinear refraction change from 1 to 2. For picosecond Z-scan in the visible spectral region, these two complexes exhibit only reverse saturable absorption, and the excited-state absorption cross-section increases at longer wavelengths.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp0771116