Loading…

From rigid cyclic templates to conformationally stabilized acyclic scaffolds. Part I: The discovery of CCR3 antagonist development candidate BMS-639623 with picomolar inhibition potency against eosinophil chemotaxis

Conformational analysis of trans-1,2-disubstituted cyclohexane CCR3 antagonist 2 revealed that the cyclohexane linker could be replaced by an acyclic syn-α-methyl-β-hydroxypropyl linker. It was found that the α-methyl group lowered protein binding and the β-hydroxyl group lowered affinity for CYP2D6...

Full description

Saved in:
Bibliographic Details
Published in:Bioorganic & medicinal chemistry letters 2008-01, Vol.18 (2), p.576-585
Main Authors: Santella, Joseph B., Gardner, Daniel S., Yao, Wenqing, Shi, Chongsheng, Reddy, Prabhakar, Tebben, Andrew J., DeLucca, George V., Wacker, Dean A., Watson, Paul S., Welch, Patricia K., Wadman, Eric A., Davies, Paul, Solomon, Kimberly A., Graden, Dani M., Yeleswaram, Swamy, Mandlekar, Sandhya, Kariv, Ilona, Decicco, Carl P., Ko, Soo S., Carter, Percy H., Duncia, John V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c299t-90c1db901250671a14fd115aa138dd0ba16be80021d4bf6a618bff961d60fb23
cites cdi_FETCH-LOGICAL-c299t-90c1db901250671a14fd115aa138dd0ba16be80021d4bf6a618bff961d60fb23
container_end_page 585
container_issue 2
container_start_page 576
container_title Bioorganic & medicinal chemistry letters
container_volume 18
creator Santella, Joseph B.
Gardner, Daniel S.
Yao, Wenqing
Shi, Chongsheng
Reddy, Prabhakar
Tebben, Andrew J.
DeLucca, George V.
Wacker, Dean A.
Watson, Paul S.
Welch, Patricia K.
Wadman, Eric A.
Davies, Paul
Solomon, Kimberly A.
Graden, Dani M.
Yeleswaram, Swamy
Mandlekar, Sandhya
Kariv, Ilona
Decicco, Carl P.
Ko, Soo S.
Carter, Percy H.
Duncia, John V.
description Conformational analysis of trans-1,2-disubstituted cyclohexane CCR3 antagonist 2 revealed that the cyclohexane linker could be replaced by an acyclic syn-α-methyl-β-hydroxypropyl linker. It was found that the α-methyl group lowered protein binding and the β-hydroxyl group lowered affinity for CYP2D6. Urea 31 (BMS-639623) with a chemotaxis IC 50 = 38 pM for eosinophils was chosen to enter clinical development. Conformational analysis of trans-1,2-disubstituted cyclohexane CCR3 antagonist 2 revealed that the cyclohexane linker could be replaced by an acyclic syn-α-methyl-β-hydroxypropyl linker. Synthesis and biological evaluation of mono- and disubstituted propyl linkers support this conformational correlation. It was also found that the α-methyl group to the urea lowered protein binding and that the β-hydroxyl group lowered affinity for CYP2D6. Ab initio calculations show that the α-methyl group governs the spatial orientation of three key functionalities within the molecule. α-Methyl-β-hydroxypropyl urea 31 with a chemotaxis IC 50 = 38 pM for eosinophils was chosen to enter clinical development for the treatment of asthma.
doi_str_mv 10.1016/j.bmcl.2007.11.067
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70219724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960894X07013777</els_id><sourcerecordid>70219724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-90c1db901250671a14fd115aa138dd0ba16be80021d4bf6a618bff961d60fb23</originalsourceid><addsrcrecordid>eNp9kc-O0zAYxCMEYsvCC3BAvsAtwU5SN0FcoGJhpUUg6IGb9cV_2q9y7GC7hfCivA6uWsGNkw_-zXg8UxRPGa0YZfzlvhpGaaua0lXFWEX56l6xYC1vy6aly_vFgvacll3ffrsqHsW4p5S1tG0fFlesy1dNxxfF75vgRxJwi4rIWVqUJOlxspB0JMkT6Z3xYYSE3oG1M4kJBrT4SysCF0GUYIy3KlbkM4REbl-RzU4ThVH6ow4z8Yas118aAi7B1juMiSh91NZPo3aJSHAKVX6RvP34teRNz-uG_MC0IxNKP3oLgaDb4YCnFGTySTs5E9gCumylfUTnpx1aInd69Al-YnxcPDBgo35yOa-Lzc27zfpDeffp_e36zV0p675PZU8lU0NPWb3M9TFgrVGMLQFY0ylFB2B80B2lNVPtYDhw1g3G9JwpTs1QN9fFi7PtFPz3g45JjPnX2lpw2h-iWGVlv6rbDNZnUAYfY9BGTAFHCLNgVJzWFHtxWlOc1hSMiRwni55d3A_DqNU_yWW-DDy_AJBHsCaAkxj_ctmrpXXNMvf6zOlcxRF1EFFiLlErDFomoTz-L8cfj8vCfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70219724</pqid></control><display><type>article</type><title>From rigid cyclic templates to conformationally stabilized acyclic scaffolds. Part I: The discovery of CCR3 antagonist development candidate BMS-639623 with picomolar inhibition potency against eosinophil chemotaxis</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Santella, Joseph B. ; Gardner, Daniel S. ; Yao, Wenqing ; Shi, Chongsheng ; Reddy, Prabhakar ; Tebben, Andrew J. ; DeLucca, George V. ; Wacker, Dean A. ; Watson, Paul S. ; Welch, Patricia K. ; Wadman, Eric A. ; Davies, Paul ; Solomon, Kimberly A. ; Graden, Dani M. ; Yeleswaram, Swamy ; Mandlekar, Sandhya ; Kariv, Ilona ; Decicco, Carl P. ; Ko, Soo S. ; Carter, Percy H. ; Duncia, John V.</creator><creatorcontrib>Santella, Joseph B. ; Gardner, Daniel S. ; Yao, Wenqing ; Shi, Chongsheng ; Reddy, Prabhakar ; Tebben, Andrew J. ; DeLucca, George V. ; Wacker, Dean A. ; Watson, Paul S. ; Welch, Patricia K. ; Wadman, Eric A. ; Davies, Paul ; Solomon, Kimberly A. ; Graden, Dani M. ; Yeleswaram, Swamy ; Mandlekar, Sandhya ; Kariv, Ilona ; Decicco, Carl P. ; Ko, Soo S. ; Carter, Percy H. ; Duncia, John V.</creatorcontrib><description>Conformational analysis of trans-1,2-disubstituted cyclohexane CCR3 antagonist 2 revealed that the cyclohexane linker could be replaced by an acyclic syn-α-methyl-β-hydroxypropyl linker. It was found that the α-methyl group lowered protein binding and the β-hydroxyl group lowered affinity for CYP2D6. Urea 31 (BMS-639623) with a chemotaxis IC 50 = 38 pM for eosinophils was chosen to enter clinical development. Conformational analysis of trans-1,2-disubstituted cyclohexane CCR3 antagonist 2 revealed that the cyclohexane linker could be replaced by an acyclic syn-α-methyl-β-hydroxypropyl linker. Synthesis and biological evaluation of mono- and disubstituted propyl linkers support this conformational correlation. It was also found that the α-methyl group to the urea lowered protein binding and that the β-hydroxyl group lowered affinity for CYP2D6. Ab initio calculations show that the α-methyl group governs the spatial orientation of three key functionalities within the molecule. α-Methyl-β-hydroxypropyl urea 31 with a chemotaxis IC 50 = 38 pM for eosinophils was chosen to enter clinical development for the treatment of asthma.</description><identifier>ISSN: 0960-894X</identifier><identifier>EISSN: 1464-3405</identifier><identifier>DOI: 10.1016/j.bmcl.2007.11.067</identifier><identifier>PMID: 18096386</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Ab initio ; Acyclic scaffold ; Administration, Oral ; Animals ; Asthma ; Biological and medical sciences ; BMS-639623 ; CCR3 antagonist ; Chemotaxis, Leukocyte - drug effects ; Conformational analysis ; Cytochrome P-450 Enzyme Inhibitors ; Development candidate ; Dogs ; Eosinophil chemotaxis ; Eosinophils - cytology ; Eosinophils - drug effects ; Hydrogen Bonding ; Medical sciences ; Mice ; Molecular Conformation ; Pharmacology. Drug treatments ; Piperidines - chemistry ; Piperidines - pharmacokinetics ; Piperidines - pharmacology ; Rats ; Receptors, CCR3 - antagonists &amp; inhibitors ; Respiratory system ; Structure-Activity Relationship ; Urea - analogs &amp; derivatives ; Urea - chemistry ; Urea - pharmacokinetics ; Urea - pharmacology</subject><ispartof>Bioorganic &amp; medicinal chemistry letters, 2008-01, Vol.18 (2), p.576-585</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-90c1db901250671a14fd115aa138dd0ba16be80021d4bf6a618bff961d60fb23</citedby><cites>FETCH-LOGICAL-c299t-90c1db901250671a14fd115aa138dd0ba16be80021d4bf6a618bff961d60fb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20040221$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18096386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santella, Joseph B.</creatorcontrib><creatorcontrib>Gardner, Daniel S.</creatorcontrib><creatorcontrib>Yao, Wenqing</creatorcontrib><creatorcontrib>Shi, Chongsheng</creatorcontrib><creatorcontrib>Reddy, Prabhakar</creatorcontrib><creatorcontrib>Tebben, Andrew J.</creatorcontrib><creatorcontrib>DeLucca, George V.</creatorcontrib><creatorcontrib>Wacker, Dean A.</creatorcontrib><creatorcontrib>Watson, Paul S.</creatorcontrib><creatorcontrib>Welch, Patricia K.</creatorcontrib><creatorcontrib>Wadman, Eric A.</creatorcontrib><creatorcontrib>Davies, Paul</creatorcontrib><creatorcontrib>Solomon, Kimberly A.</creatorcontrib><creatorcontrib>Graden, Dani M.</creatorcontrib><creatorcontrib>Yeleswaram, Swamy</creatorcontrib><creatorcontrib>Mandlekar, Sandhya</creatorcontrib><creatorcontrib>Kariv, Ilona</creatorcontrib><creatorcontrib>Decicco, Carl P.</creatorcontrib><creatorcontrib>Ko, Soo S.</creatorcontrib><creatorcontrib>Carter, Percy H.</creatorcontrib><creatorcontrib>Duncia, John V.</creatorcontrib><title>From rigid cyclic templates to conformationally stabilized acyclic scaffolds. Part I: The discovery of CCR3 antagonist development candidate BMS-639623 with picomolar inhibition potency against eosinophil chemotaxis</title><title>Bioorganic &amp; medicinal chemistry letters</title><addtitle>Bioorg Med Chem Lett</addtitle><description>Conformational analysis of trans-1,2-disubstituted cyclohexane CCR3 antagonist 2 revealed that the cyclohexane linker could be replaced by an acyclic syn-α-methyl-β-hydroxypropyl linker. It was found that the α-methyl group lowered protein binding and the β-hydroxyl group lowered affinity for CYP2D6. Urea 31 (BMS-639623) with a chemotaxis IC 50 = 38 pM for eosinophils was chosen to enter clinical development. Conformational analysis of trans-1,2-disubstituted cyclohexane CCR3 antagonist 2 revealed that the cyclohexane linker could be replaced by an acyclic syn-α-methyl-β-hydroxypropyl linker. Synthesis and biological evaluation of mono- and disubstituted propyl linkers support this conformational correlation. It was also found that the α-methyl group to the urea lowered protein binding and that the β-hydroxyl group lowered affinity for CYP2D6. Ab initio calculations show that the α-methyl group governs the spatial orientation of three key functionalities within the molecule. α-Methyl-β-hydroxypropyl urea 31 with a chemotaxis IC 50 = 38 pM for eosinophils was chosen to enter clinical development for the treatment of asthma.</description><subject>Ab initio</subject><subject>Acyclic scaffold</subject><subject>Administration, Oral</subject><subject>Animals</subject><subject>Asthma</subject><subject>Biological and medical sciences</subject><subject>BMS-639623</subject><subject>CCR3 antagonist</subject><subject>Chemotaxis, Leukocyte - drug effects</subject><subject>Conformational analysis</subject><subject>Cytochrome P-450 Enzyme Inhibitors</subject><subject>Development candidate</subject><subject>Dogs</subject><subject>Eosinophil chemotaxis</subject><subject>Eosinophils - cytology</subject><subject>Eosinophils - drug effects</subject><subject>Hydrogen Bonding</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Molecular Conformation</subject><subject>Pharmacology. Drug treatments</subject><subject>Piperidines - chemistry</subject><subject>Piperidines - pharmacokinetics</subject><subject>Piperidines - pharmacology</subject><subject>Rats</subject><subject>Receptors, CCR3 - antagonists &amp; inhibitors</subject><subject>Respiratory system</subject><subject>Structure-Activity Relationship</subject><subject>Urea - analogs &amp; derivatives</subject><subject>Urea - chemistry</subject><subject>Urea - pharmacokinetics</subject><subject>Urea - pharmacology</subject><issn>0960-894X</issn><issn>1464-3405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kc-O0zAYxCMEYsvCC3BAvsAtwU5SN0FcoGJhpUUg6IGb9cV_2q9y7GC7hfCivA6uWsGNkw_-zXg8UxRPGa0YZfzlvhpGaaua0lXFWEX56l6xYC1vy6aly_vFgvacll3ffrsqHsW4p5S1tG0fFlesy1dNxxfF75vgRxJwi4rIWVqUJOlxspB0JMkT6Z3xYYSE3oG1M4kJBrT4SysCF0GUYIy3KlbkM4REbl-RzU4ThVH6ow4z8Yas118aAi7B1juMiSh91NZPo3aJSHAKVX6RvP34teRNz-uG_MC0IxNKP3oLgaDb4YCnFGTySTs5E9gCumylfUTnpx1aInd69Al-YnxcPDBgo35yOa-Lzc27zfpDeffp_e36zV0p675PZU8lU0NPWb3M9TFgrVGMLQFY0ylFB2B80B2lNVPtYDhw1g3G9JwpTs1QN9fFi7PtFPz3g45JjPnX2lpw2h-iWGVlv6rbDNZnUAYfY9BGTAFHCLNgVJzWFHtxWlOc1hSMiRwni55d3A_DqNU_yWW-DDy_AJBHsCaAkxj_ctmrpXXNMvf6zOlcxRF1EFFiLlErDFomoTz-L8cfj8vCfw</recordid><startdate>20080115</startdate><enddate>20080115</enddate><creator>Santella, Joseph B.</creator><creator>Gardner, Daniel S.</creator><creator>Yao, Wenqing</creator><creator>Shi, Chongsheng</creator><creator>Reddy, Prabhakar</creator><creator>Tebben, Andrew J.</creator><creator>DeLucca, George V.</creator><creator>Wacker, Dean A.</creator><creator>Watson, Paul S.</creator><creator>Welch, Patricia K.</creator><creator>Wadman, Eric A.</creator><creator>Davies, Paul</creator><creator>Solomon, Kimberly A.</creator><creator>Graden, Dani M.</creator><creator>Yeleswaram, Swamy</creator><creator>Mandlekar, Sandhya</creator><creator>Kariv, Ilona</creator><creator>Decicco, Carl P.</creator><creator>Ko, Soo S.</creator><creator>Carter, Percy H.</creator><creator>Duncia, John V.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080115</creationdate><title>From rigid cyclic templates to conformationally stabilized acyclic scaffolds. Part I: The discovery of CCR3 antagonist development candidate BMS-639623 with picomolar inhibition potency against eosinophil chemotaxis</title><author>Santella, Joseph B. ; Gardner, Daniel S. ; Yao, Wenqing ; Shi, Chongsheng ; Reddy, Prabhakar ; Tebben, Andrew J. ; DeLucca, George V. ; Wacker, Dean A. ; Watson, Paul S. ; Welch, Patricia K. ; Wadman, Eric A. ; Davies, Paul ; Solomon, Kimberly A. ; Graden, Dani M. ; Yeleswaram, Swamy ; Mandlekar, Sandhya ; Kariv, Ilona ; Decicco, Carl P. ; Ko, Soo S. ; Carter, Percy H. ; Duncia, John V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-90c1db901250671a14fd115aa138dd0ba16be80021d4bf6a618bff961d60fb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Ab initio</topic><topic>Acyclic scaffold</topic><topic>Administration, Oral</topic><topic>Animals</topic><topic>Asthma</topic><topic>Biological and medical sciences</topic><topic>BMS-639623</topic><topic>CCR3 antagonist</topic><topic>Chemotaxis, Leukocyte - drug effects</topic><topic>Conformational analysis</topic><topic>Cytochrome P-450 Enzyme Inhibitors</topic><topic>Development candidate</topic><topic>Dogs</topic><topic>Eosinophil chemotaxis</topic><topic>Eosinophils - cytology</topic><topic>Eosinophils - drug effects</topic><topic>Hydrogen Bonding</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Molecular Conformation</topic><topic>Pharmacology. Drug treatments</topic><topic>Piperidines - chemistry</topic><topic>Piperidines - pharmacokinetics</topic><topic>Piperidines - pharmacology</topic><topic>Rats</topic><topic>Receptors, CCR3 - antagonists &amp; inhibitors</topic><topic>Respiratory system</topic><topic>Structure-Activity Relationship</topic><topic>Urea - analogs &amp; derivatives</topic><topic>Urea - chemistry</topic><topic>Urea - pharmacokinetics</topic><topic>Urea - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santella, Joseph B.</creatorcontrib><creatorcontrib>Gardner, Daniel S.</creatorcontrib><creatorcontrib>Yao, Wenqing</creatorcontrib><creatorcontrib>Shi, Chongsheng</creatorcontrib><creatorcontrib>Reddy, Prabhakar</creatorcontrib><creatorcontrib>Tebben, Andrew J.</creatorcontrib><creatorcontrib>DeLucca, George V.</creatorcontrib><creatorcontrib>Wacker, Dean A.</creatorcontrib><creatorcontrib>Watson, Paul S.</creatorcontrib><creatorcontrib>Welch, Patricia K.</creatorcontrib><creatorcontrib>Wadman, Eric A.</creatorcontrib><creatorcontrib>Davies, Paul</creatorcontrib><creatorcontrib>Solomon, Kimberly A.</creatorcontrib><creatorcontrib>Graden, Dani M.</creatorcontrib><creatorcontrib>Yeleswaram, Swamy</creatorcontrib><creatorcontrib>Mandlekar, Sandhya</creatorcontrib><creatorcontrib>Kariv, Ilona</creatorcontrib><creatorcontrib>Decicco, Carl P.</creatorcontrib><creatorcontrib>Ko, Soo S.</creatorcontrib><creatorcontrib>Carter, Percy H.</creatorcontrib><creatorcontrib>Duncia, John V.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioorganic &amp; medicinal chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santella, Joseph B.</au><au>Gardner, Daniel S.</au><au>Yao, Wenqing</au><au>Shi, Chongsheng</au><au>Reddy, Prabhakar</au><au>Tebben, Andrew J.</au><au>DeLucca, George V.</au><au>Wacker, Dean A.</au><au>Watson, Paul S.</au><au>Welch, Patricia K.</au><au>Wadman, Eric A.</au><au>Davies, Paul</au><au>Solomon, Kimberly A.</au><au>Graden, Dani M.</au><au>Yeleswaram, Swamy</au><au>Mandlekar, Sandhya</au><au>Kariv, Ilona</au><au>Decicco, Carl P.</au><au>Ko, Soo S.</au><au>Carter, Percy H.</au><au>Duncia, John V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From rigid cyclic templates to conformationally stabilized acyclic scaffolds. Part I: The discovery of CCR3 antagonist development candidate BMS-639623 with picomolar inhibition potency against eosinophil chemotaxis</atitle><jtitle>Bioorganic &amp; medicinal chemistry letters</jtitle><addtitle>Bioorg Med Chem Lett</addtitle><date>2008-01-15</date><risdate>2008</risdate><volume>18</volume><issue>2</issue><spage>576</spage><epage>585</epage><pages>576-585</pages><issn>0960-894X</issn><eissn>1464-3405</eissn><abstract>Conformational analysis of trans-1,2-disubstituted cyclohexane CCR3 antagonist 2 revealed that the cyclohexane linker could be replaced by an acyclic syn-α-methyl-β-hydroxypropyl linker. It was found that the α-methyl group lowered protein binding and the β-hydroxyl group lowered affinity for CYP2D6. Urea 31 (BMS-639623) with a chemotaxis IC 50 = 38 pM for eosinophils was chosen to enter clinical development. Conformational analysis of trans-1,2-disubstituted cyclohexane CCR3 antagonist 2 revealed that the cyclohexane linker could be replaced by an acyclic syn-α-methyl-β-hydroxypropyl linker. Synthesis and biological evaluation of mono- and disubstituted propyl linkers support this conformational correlation. It was also found that the α-methyl group to the urea lowered protein binding and that the β-hydroxyl group lowered affinity for CYP2D6. Ab initio calculations show that the α-methyl group governs the spatial orientation of three key functionalities within the molecule. α-Methyl-β-hydroxypropyl urea 31 with a chemotaxis IC 50 = 38 pM for eosinophils was chosen to enter clinical development for the treatment of asthma.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>18096386</pmid><doi>10.1016/j.bmcl.2007.11.067</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-894X
ispartof Bioorganic & medicinal chemistry letters, 2008-01, Vol.18 (2), p.576-585
issn 0960-894X
1464-3405
language eng
recordid cdi_proquest_miscellaneous_70219724
source ScienceDirect Freedom Collection 2022-2024
subjects Ab initio
Acyclic scaffold
Administration, Oral
Animals
Asthma
Biological and medical sciences
BMS-639623
CCR3 antagonist
Chemotaxis, Leukocyte - drug effects
Conformational analysis
Cytochrome P-450 Enzyme Inhibitors
Development candidate
Dogs
Eosinophil chemotaxis
Eosinophils - cytology
Eosinophils - drug effects
Hydrogen Bonding
Medical sciences
Mice
Molecular Conformation
Pharmacology. Drug treatments
Piperidines - chemistry
Piperidines - pharmacokinetics
Piperidines - pharmacology
Rats
Receptors, CCR3 - antagonists & inhibitors
Respiratory system
Structure-Activity Relationship
Urea - analogs & derivatives
Urea - chemistry
Urea - pharmacokinetics
Urea - pharmacology
title From rigid cyclic templates to conformationally stabilized acyclic scaffolds. Part I: The discovery of CCR3 antagonist development candidate BMS-639623 with picomolar inhibition potency against eosinophil chemotaxis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20rigid%20cyclic%20templates%20to%20conformationally%20stabilized%20acyclic%20scaffolds.%20Part%20I:%20The%20discovery%20of%20CCR3%20antagonist%20development%20candidate%20BMS-639623%20with%20picomolar%20inhibition%20potency%20against%20eosinophil%20chemotaxis&rft.jtitle=Bioorganic%20&%20medicinal%20chemistry%20letters&rft.au=Santella,%20Joseph%20B.&rft.date=2008-01-15&rft.volume=18&rft.issue=2&rft.spage=576&rft.epage=585&rft.pages=576-585&rft.issn=0960-894X&rft.eissn=1464-3405&rft_id=info:doi/10.1016/j.bmcl.2007.11.067&rft_dat=%3Cproquest_cross%3E70219724%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-90c1db901250671a14fd115aa138dd0ba16be80021d4bf6a618bff961d60fb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70219724&rft_id=info:pmid/18096386&rfr_iscdi=true