Loading…
From rigid cyclic templates to conformationally stabilized acyclic scaffolds. Part I: The discovery of CCR3 antagonist development candidate BMS-639623 with picomolar inhibition potency against eosinophil chemotaxis
Conformational analysis of trans-1,2-disubstituted cyclohexane CCR3 antagonist 2 revealed that the cyclohexane linker could be replaced by an acyclic syn-α-methyl-β-hydroxypropyl linker. It was found that the α-methyl group lowered protein binding and the β-hydroxyl group lowered affinity for CYP2D6...
Saved in:
Published in: | Bioorganic & medicinal chemistry letters 2008-01, Vol.18 (2), p.576-585 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c299t-90c1db901250671a14fd115aa138dd0ba16be80021d4bf6a618bff961d60fb23 |
---|---|
cites | cdi_FETCH-LOGICAL-c299t-90c1db901250671a14fd115aa138dd0ba16be80021d4bf6a618bff961d60fb23 |
container_end_page | 585 |
container_issue | 2 |
container_start_page | 576 |
container_title | Bioorganic & medicinal chemistry letters |
container_volume | 18 |
creator | Santella, Joseph B. Gardner, Daniel S. Yao, Wenqing Shi, Chongsheng Reddy, Prabhakar Tebben, Andrew J. DeLucca, George V. Wacker, Dean A. Watson, Paul S. Welch, Patricia K. Wadman, Eric A. Davies, Paul Solomon, Kimberly A. Graden, Dani M. Yeleswaram, Swamy Mandlekar, Sandhya Kariv, Ilona Decicco, Carl P. Ko, Soo S. Carter, Percy H. Duncia, John V. |
description | Conformational analysis of
trans-1,2-disubstituted cyclohexane CCR3 antagonist
2 revealed that the cyclohexane linker could be replaced by an acyclic
syn-α-methyl-β-hydroxypropyl linker. It was found that the α-methyl group lowered protein binding and the β-hydroxyl group lowered affinity for CYP2D6. Urea
31 (BMS-639623) with a chemotaxis IC
50
=
38
pM for eosinophils was chosen to enter clinical development.
Conformational analysis of
trans-1,2-disubstituted cyclohexane CCR3 antagonist
2 revealed that the cyclohexane linker could be replaced by an acyclic
syn-α-methyl-β-hydroxypropyl linker. Synthesis and biological evaluation of mono- and disubstituted propyl linkers support this conformational correlation. It was also found that the α-methyl group to the urea lowered protein binding and that the β-hydroxyl group lowered affinity for CYP2D6. Ab initio calculations show that the α-methyl group governs the spatial orientation of three key functionalities within the molecule. α-Methyl-β-hydroxypropyl urea
31 with a chemotaxis IC
50
=
38
pM for eosinophils was chosen to enter clinical development for the treatment of asthma. |
doi_str_mv | 10.1016/j.bmcl.2007.11.067 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70219724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960894X07013777</els_id><sourcerecordid>70219724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-90c1db901250671a14fd115aa138dd0ba16be80021d4bf6a618bff961d60fb23</originalsourceid><addsrcrecordid>eNp9kc-O0zAYxCMEYsvCC3BAvsAtwU5SN0FcoGJhpUUg6IGb9cV_2q9y7GC7hfCivA6uWsGNkw_-zXg8UxRPGa0YZfzlvhpGaaua0lXFWEX56l6xYC1vy6aly_vFgvacll3ffrsqHsW4p5S1tG0fFlesy1dNxxfF75vgRxJwi4rIWVqUJOlxspB0JMkT6Z3xYYSE3oG1M4kJBrT4SysCF0GUYIy3KlbkM4REbl-RzU4ThVH6ow4z8Yas118aAi7B1juMiSh91NZPo3aJSHAKVX6RvP34teRNz-uG_MC0IxNKP3oLgaDb4YCnFGTySTs5E9gCumylfUTnpx1aInd69Al-YnxcPDBgo35yOa-Lzc27zfpDeffp_e36zV0p675PZU8lU0NPWb3M9TFgrVGMLQFY0ylFB2B80B2lNVPtYDhw1g3G9JwpTs1QN9fFi7PtFPz3g45JjPnX2lpw2h-iWGVlv6rbDNZnUAYfY9BGTAFHCLNgVJzWFHtxWlOc1hSMiRwni55d3A_DqNU_yWW-DDy_AJBHsCaAkxj_ctmrpXXNMvf6zOlcxRF1EFFiLlErDFomoTz-L8cfj8vCfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70219724</pqid></control><display><type>article</type><title>From rigid cyclic templates to conformationally stabilized acyclic scaffolds. Part I: The discovery of CCR3 antagonist development candidate BMS-639623 with picomolar inhibition potency against eosinophil chemotaxis</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Santella, Joseph B. ; Gardner, Daniel S. ; Yao, Wenqing ; Shi, Chongsheng ; Reddy, Prabhakar ; Tebben, Andrew J. ; DeLucca, George V. ; Wacker, Dean A. ; Watson, Paul S. ; Welch, Patricia K. ; Wadman, Eric A. ; Davies, Paul ; Solomon, Kimberly A. ; Graden, Dani M. ; Yeleswaram, Swamy ; Mandlekar, Sandhya ; Kariv, Ilona ; Decicco, Carl P. ; Ko, Soo S. ; Carter, Percy H. ; Duncia, John V.</creator><creatorcontrib>Santella, Joseph B. ; Gardner, Daniel S. ; Yao, Wenqing ; Shi, Chongsheng ; Reddy, Prabhakar ; Tebben, Andrew J. ; DeLucca, George V. ; Wacker, Dean A. ; Watson, Paul S. ; Welch, Patricia K. ; Wadman, Eric A. ; Davies, Paul ; Solomon, Kimberly A. ; Graden, Dani M. ; Yeleswaram, Swamy ; Mandlekar, Sandhya ; Kariv, Ilona ; Decicco, Carl P. ; Ko, Soo S. ; Carter, Percy H. ; Duncia, John V.</creatorcontrib><description>Conformational analysis of
trans-1,2-disubstituted cyclohexane CCR3 antagonist
2 revealed that the cyclohexane linker could be replaced by an acyclic
syn-α-methyl-β-hydroxypropyl linker. It was found that the α-methyl group lowered protein binding and the β-hydroxyl group lowered affinity for CYP2D6. Urea
31 (BMS-639623) with a chemotaxis IC
50
=
38
pM for eosinophils was chosen to enter clinical development.
Conformational analysis of
trans-1,2-disubstituted cyclohexane CCR3 antagonist
2 revealed that the cyclohexane linker could be replaced by an acyclic
syn-α-methyl-β-hydroxypropyl linker. Synthesis and biological evaluation of mono- and disubstituted propyl linkers support this conformational correlation. It was also found that the α-methyl group to the urea lowered protein binding and that the β-hydroxyl group lowered affinity for CYP2D6. Ab initio calculations show that the α-methyl group governs the spatial orientation of three key functionalities within the molecule. α-Methyl-β-hydroxypropyl urea
31 with a chemotaxis IC
50
=
38
pM for eosinophils was chosen to enter clinical development for the treatment of asthma.</description><identifier>ISSN: 0960-894X</identifier><identifier>EISSN: 1464-3405</identifier><identifier>DOI: 10.1016/j.bmcl.2007.11.067</identifier><identifier>PMID: 18096386</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Ab initio ; Acyclic scaffold ; Administration, Oral ; Animals ; Asthma ; Biological and medical sciences ; BMS-639623 ; CCR3 antagonist ; Chemotaxis, Leukocyte - drug effects ; Conformational analysis ; Cytochrome P-450 Enzyme Inhibitors ; Development candidate ; Dogs ; Eosinophil chemotaxis ; Eosinophils - cytology ; Eosinophils - drug effects ; Hydrogen Bonding ; Medical sciences ; Mice ; Molecular Conformation ; Pharmacology. Drug treatments ; Piperidines - chemistry ; Piperidines - pharmacokinetics ; Piperidines - pharmacology ; Rats ; Receptors, CCR3 - antagonists & inhibitors ; Respiratory system ; Structure-Activity Relationship ; Urea - analogs & derivatives ; Urea - chemistry ; Urea - pharmacokinetics ; Urea - pharmacology</subject><ispartof>Bioorganic & medicinal chemistry letters, 2008-01, Vol.18 (2), p.576-585</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-90c1db901250671a14fd115aa138dd0ba16be80021d4bf6a618bff961d60fb23</citedby><cites>FETCH-LOGICAL-c299t-90c1db901250671a14fd115aa138dd0ba16be80021d4bf6a618bff961d60fb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20040221$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18096386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santella, Joseph B.</creatorcontrib><creatorcontrib>Gardner, Daniel S.</creatorcontrib><creatorcontrib>Yao, Wenqing</creatorcontrib><creatorcontrib>Shi, Chongsheng</creatorcontrib><creatorcontrib>Reddy, Prabhakar</creatorcontrib><creatorcontrib>Tebben, Andrew J.</creatorcontrib><creatorcontrib>DeLucca, George V.</creatorcontrib><creatorcontrib>Wacker, Dean A.</creatorcontrib><creatorcontrib>Watson, Paul S.</creatorcontrib><creatorcontrib>Welch, Patricia K.</creatorcontrib><creatorcontrib>Wadman, Eric A.</creatorcontrib><creatorcontrib>Davies, Paul</creatorcontrib><creatorcontrib>Solomon, Kimberly A.</creatorcontrib><creatorcontrib>Graden, Dani M.</creatorcontrib><creatorcontrib>Yeleswaram, Swamy</creatorcontrib><creatorcontrib>Mandlekar, Sandhya</creatorcontrib><creatorcontrib>Kariv, Ilona</creatorcontrib><creatorcontrib>Decicco, Carl P.</creatorcontrib><creatorcontrib>Ko, Soo S.</creatorcontrib><creatorcontrib>Carter, Percy H.</creatorcontrib><creatorcontrib>Duncia, John V.</creatorcontrib><title>From rigid cyclic templates to conformationally stabilized acyclic scaffolds. Part I: The discovery of CCR3 antagonist development candidate BMS-639623 with picomolar inhibition potency against eosinophil chemotaxis</title><title>Bioorganic & medicinal chemistry letters</title><addtitle>Bioorg Med Chem Lett</addtitle><description>Conformational analysis of
trans-1,2-disubstituted cyclohexane CCR3 antagonist
2 revealed that the cyclohexane linker could be replaced by an acyclic
syn-α-methyl-β-hydroxypropyl linker. It was found that the α-methyl group lowered protein binding and the β-hydroxyl group lowered affinity for CYP2D6. Urea
31 (BMS-639623) with a chemotaxis IC
50
=
38
pM for eosinophils was chosen to enter clinical development.
Conformational analysis of
trans-1,2-disubstituted cyclohexane CCR3 antagonist
2 revealed that the cyclohexane linker could be replaced by an acyclic
syn-α-methyl-β-hydroxypropyl linker. Synthesis and biological evaluation of mono- and disubstituted propyl linkers support this conformational correlation. It was also found that the α-methyl group to the urea lowered protein binding and that the β-hydroxyl group lowered affinity for CYP2D6. Ab initio calculations show that the α-methyl group governs the spatial orientation of three key functionalities within the molecule. α-Methyl-β-hydroxypropyl urea
31 with a chemotaxis IC
50
=
38
pM for eosinophils was chosen to enter clinical development for the treatment of asthma.</description><subject>Ab initio</subject><subject>Acyclic scaffold</subject><subject>Administration, Oral</subject><subject>Animals</subject><subject>Asthma</subject><subject>Biological and medical sciences</subject><subject>BMS-639623</subject><subject>CCR3 antagonist</subject><subject>Chemotaxis, Leukocyte - drug effects</subject><subject>Conformational analysis</subject><subject>Cytochrome P-450 Enzyme Inhibitors</subject><subject>Development candidate</subject><subject>Dogs</subject><subject>Eosinophil chemotaxis</subject><subject>Eosinophils - cytology</subject><subject>Eosinophils - drug effects</subject><subject>Hydrogen Bonding</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Molecular Conformation</subject><subject>Pharmacology. Drug treatments</subject><subject>Piperidines - chemistry</subject><subject>Piperidines - pharmacokinetics</subject><subject>Piperidines - pharmacology</subject><subject>Rats</subject><subject>Receptors, CCR3 - antagonists & inhibitors</subject><subject>Respiratory system</subject><subject>Structure-Activity Relationship</subject><subject>Urea - analogs & derivatives</subject><subject>Urea - chemistry</subject><subject>Urea - pharmacokinetics</subject><subject>Urea - pharmacology</subject><issn>0960-894X</issn><issn>1464-3405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kc-O0zAYxCMEYsvCC3BAvsAtwU5SN0FcoGJhpUUg6IGb9cV_2q9y7GC7hfCivA6uWsGNkw_-zXg8UxRPGa0YZfzlvhpGaaua0lXFWEX56l6xYC1vy6aly_vFgvacll3ffrsqHsW4p5S1tG0fFlesy1dNxxfF75vgRxJwi4rIWVqUJOlxspB0JMkT6Z3xYYSE3oG1M4kJBrT4SysCF0GUYIy3KlbkM4REbl-RzU4ThVH6ow4z8Yas118aAi7B1juMiSh91NZPo3aJSHAKVX6RvP34teRNz-uG_MC0IxNKP3oLgaDb4YCnFGTySTs5E9gCumylfUTnpx1aInd69Al-YnxcPDBgo35yOa-Lzc27zfpDeffp_e36zV0p675PZU8lU0NPWb3M9TFgrVGMLQFY0ylFB2B80B2lNVPtYDhw1g3G9JwpTs1QN9fFi7PtFPz3g45JjPnX2lpw2h-iWGVlv6rbDNZnUAYfY9BGTAFHCLNgVJzWFHtxWlOc1hSMiRwni55d3A_DqNU_yWW-DDy_AJBHsCaAkxj_ctmrpXXNMvf6zOlcxRF1EFFiLlErDFomoTz-L8cfj8vCfw</recordid><startdate>20080115</startdate><enddate>20080115</enddate><creator>Santella, Joseph B.</creator><creator>Gardner, Daniel S.</creator><creator>Yao, Wenqing</creator><creator>Shi, Chongsheng</creator><creator>Reddy, Prabhakar</creator><creator>Tebben, Andrew J.</creator><creator>DeLucca, George V.</creator><creator>Wacker, Dean A.</creator><creator>Watson, Paul S.</creator><creator>Welch, Patricia K.</creator><creator>Wadman, Eric A.</creator><creator>Davies, Paul</creator><creator>Solomon, Kimberly A.</creator><creator>Graden, Dani M.</creator><creator>Yeleswaram, Swamy</creator><creator>Mandlekar, Sandhya</creator><creator>Kariv, Ilona</creator><creator>Decicco, Carl P.</creator><creator>Ko, Soo S.</creator><creator>Carter, Percy H.</creator><creator>Duncia, John V.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080115</creationdate><title>From rigid cyclic templates to conformationally stabilized acyclic scaffolds. Part I: The discovery of CCR3 antagonist development candidate BMS-639623 with picomolar inhibition potency against eosinophil chemotaxis</title><author>Santella, Joseph B. ; Gardner, Daniel S. ; Yao, Wenqing ; Shi, Chongsheng ; Reddy, Prabhakar ; Tebben, Andrew J. ; DeLucca, George V. ; Wacker, Dean A. ; Watson, Paul S. ; Welch, Patricia K. ; Wadman, Eric A. ; Davies, Paul ; Solomon, Kimberly A. ; Graden, Dani M. ; Yeleswaram, Swamy ; Mandlekar, Sandhya ; Kariv, Ilona ; Decicco, Carl P. ; Ko, Soo S. ; Carter, Percy H. ; Duncia, John V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-90c1db901250671a14fd115aa138dd0ba16be80021d4bf6a618bff961d60fb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Ab initio</topic><topic>Acyclic scaffold</topic><topic>Administration, Oral</topic><topic>Animals</topic><topic>Asthma</topic><topic>Biological and medical sciences</topic><topic>BMS-639623</topic><topic>CCR3 antagonist</topic><topic>Chemotaxis, Leukocyte - drug effects</topic><topic>Conformational analysis</topic><topic>Cytochrome P-450 Enzyme Inhibitors</topic><topic>Development candidate</topic><topic>Dogs</topic><topic>Eosinophil chemotaxis</topic><topic>Eosinophils - cytology</topic><topic>Eosinophils - drug effects</topic><topic>Hydrogen Bonding</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Molecular Conformation</topic><topic>Pharmacology. Drug treatments</topic><topic>Piperidines - chemistry</topic><topic>Piperidines - pharmacokinetics</topic><topic>Piperidines - pharmacology</topic><topic>Rats</topic><topic>Receptors, CCR3 - antagonists & inhibitors</topic><topic>Respiratory system</topic><topic>Structure-Activity Relationship</topic><topic>Urea - analogs & derivatives</topic><topic>Urea - chemistry</topic><topic>Urea - pharmacokinetics</topic><topic>Urea - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santella, Joseph B.</creatorcontrib><creatorcontrib>Gardner, Daniel S.</creatorcontrib><creatorcontrib>Yao, Wenqing</creatorcontrib><creatorcontrib>Shi, Chongsheng</creatorcontrib><creatorcontrib>Reddy, Prabhakar</creatorcontrib><creatorcontrib>Tebben, Andrew J.</creatorcontrib><creatorcontrib>DeLucca, George V.</creatorcontrib><creatorcontrib>Wacker, Dean A.</creatorcontrib><creatorcontrib>Watson, Paul S.</creatorcontrib><creatorcontrib>Welch, Patricia K.</creatorcontrib><creatorcontrib>Wadman, Eric A.</creatorcontrib><creatorcontrib>Davies, Paul</creatorcontrib><creatorcontrib>Solomon, Kimberly A.</creatorcontrib><creatorcontrib>Graden, Dani M.</creatorcontrib><creatorcontrib>Yeleswaram, Swamy</creatorcontrib><creatorcontrib>Mandlekar, Sandhya</creatorcontrib><creatorcontrib>Kariv, Ilona</creatorcontrib><creatorcontrib>Decicco, Carl P.</creatorcontrib><creatorcontrib>Ko, Soo S.</creatorcontrib><creatorcontrib>Carter, Percy H.</creatorcontrib><creatorcontrib>Duncia, John V.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioorganic & medicinal chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santella, Joseph B.</au><au>Gardner, Daniel S.</au><au>Yao, Wenqing</au><au>Shi, Chongsheng</au><au>Reddy, Prabhakar</au><au>Tebben, Andrew J.</au><au>DeLucca, George V.</au><au>Wacker, Dean A.</au><au>Watson, Paul S.</au><au>Welch, Patricia K.</au><au>Wadman, Eric A.</au><au>Davies, Paul</au><au>Solomon, Kimberly A.</au><au>Graden, Dani M.</au><au>Yeleswaram, Swamy</au><au>Mandlekar, Sandhya</au><au>Kariv, Ilona</au><au>Decicco, Carl P.</au><au>Ko, Soo S.</au><au>Carter, Percy H.</au><au>Duncia, John V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From rigid cyclic templates to conformationally stabilized acyclic scaffolds. Part I: The discovery of CCR3 antagonist development candidate BMS-639623 with picomolar inhibition potency against eosinophil chemotaxis</atitle><jtitle>Bioorganic & medicinal chemistry letters</jtitle><addtitle>Bioorg Med Chem Lett</addtitle><date>2008-01-15</date><risdate>2008</risdate><volume>18</volume><issue>2</issue><spage>576</spage><epage>585</epage><pages>576-585</pages><issn>0960-894X</issn><eissn>1464-3405</eissn><abstract>Conformational analysis of
trans-1,2-disubstituted cyclohexane CCR3 antagonist
2 revealed that the cyclohexane linker could be replaced by an acyclic
syn-α-methyl-β-hydroxypropyl linker. It was found that the α-methyl group lowered protein binding and the β-hydroxyl group lowered affinity for CYP2D6. Urea
31 (BMS-639623) with a chemotaxis IC
50
=
38
pM for eosinophils was chosen to enter clinical development.
Conformational analysis of
trans-1,2-disubstituted cyclohexane CCR3 antagonist
2 revealed that the cyclohexane linker could be replaced by an acyclic
syn-α-methyl-β-hydroxypropyl linker. Synthesis and biological evaluation of mono- and disubstituted propyl linkers support this conformational correlation. It was also found that the α-methyl group to the urea lowered protein binding and that the β-hydroxyl group lowered affinity for CYP2D6. Ab initio calculations show that the α-methyl group governs the spatial orientation of three key functionalities within the molecule. α-Methyl-β-hydroxypropyl urea
31 with a chemotaxis IC
50
=
38
pM for eosinophils was chosen to enter clinical development for the treatment of asthma.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>18096386</pmid><doi>10.1016/j.bmcl.2007.11.067</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-894X |
ispartof | Bioorganic & medicinal chemistry letters, 2008-01, Vol.18 (2), p.576-585 |
issn | 0960-894X 1464-3405 |
language | eng |
recordid | cdi_proquest_miscellaneous_70219724 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Ab initio Acyclic scaffold Administration, Oral Animals Asthma Biological and medical sciences BMS-639623 CCR3 antagonist Chemotaxis, Leukocyte - drug effects Conformational analysis Cytochrome P-450 Enzyme Inhibitors Development candidate Dogs Eosinophil chemotaxis Eosinophils - cytology Eosinophils - drug effects Hydrogen Bonding Medical sciences Mice Molecular Conformation Pharmacology. Drug treatments Piperidines - chemistry Piperidines - pharmacokinetics Piperidines - pharmacology Rats Receptors, CCR3 - antagonists & inhibitors Respiratory system Structure-Activity Relationship Urea - analogs & derivatives Urea - chemistry Urea - pharmacokinetics Urea - pharmacology |
title | From rigid cyclic templates to conformationally stabilized acyclic scaffolds. Part I: The discovery of CCR3 antagonist development candidate BMS-639623 with picomolar inhibition potency against eosinophil chemotaxis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20rigid%20cyclic%20templates%20to%20conformationally%20stabilized%20acyclic%20scaffolds.%20Part%20I:%20The%20discovery%20of%20CCR3%20antagonist%20development%20candidate%20BMS-639623%20with%20picomolar%20inhibition%20potency%20against%20eosinophil%20chemotaxis&rft.jtitle=Bioorganic%20&%20medicinal%20chemistry%20letters&rft.au=Santella,%20Joseph%20B.&rft.date=2008-01-15&rft.volume=18&rft.issue=2&rft.spage=576&rft.epage=585&rft.pages=576-585&rft.issn=0960-894X&rft.eissn=1464-3405&rft_id=info:doi/10.1016/j.bmcl.2007.11.067&rft_dat=%3Cproquest_cross%3E70219724%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-90c1db901250671a14fd115aa138dd0ba16be80021d4bf6a618bff961d60fb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70219724&rft_id=info:pmid/18096386&rfr_iscdi=true |