Loading…

Lipid Rafts Keep NADPH Oxidase in the Inactive State in Human Renal Proximal Tubule Cells

Recent studies have indicated the importance of cholesterol-rich membrane lipid rafts (LRs) in oxidative stress-induced signal transduction. Reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases, the major sources of reactive oxygen species, are implicated in cardiovascular diseases,...

Full description

Saved in:
Bibliographic Details
Published in:Hypertension (Dallas, Tex. 1979) Tex. 1979), 2008-02, Vol.51 (2, Part 2), p.481-487
Main Authors: Han, Weixing, Li, Hewang, Villar, Van Anthony M, Pascua, Annabelle M, Dajani, Mustafa I, Wang, Xiaoyang, Natarajan, Aruna, Quinn, Mark T, Felder, Robin A, Jose, Pedro A, Yu, Peiying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6081-7b34beeb0a9beb54b8a48406129f7c8dabc2daa4043fd30ed55ff087662d54fa3
cites cdi_FETCH-LOGICAL-c6081-7b34beeb0a9beb54b8a48406129f7c8dabc2daa4043fd30ed55ff087662d54fa3
container_end_page 487
container_issue 2, Part 2
container_start_page 481
container_title Hypertension (Dallas, Tex. 1979)
container_volume 51
creator Han, Weixing
Li, Hewang
Villar, Van Anthony M
Pascua, Annabelle M
Dajani, Mustafa I
Wang, Xiaoyang
Natarajan, Aruna
Quinn, Mark T
Felder, Robin A
Jose, Pedro A
Yu, Peiying
description Recent studies have indicated the importance of cholesterol-rich membrane lipid rafts (LRs) in oxidative stress-induced signal transduction. Reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases, the major sources of reactive oxygen species, are implicated in cardiovascular diseases, including hypertension. We tested the hypothesis that NADPH oxidase subunits and activity are regulated by LRs in human renal proximal tubule cells. We report that a high proportion of p22 and the small GTPase Rac1 are expressed in LRs in human renal proximal tubule cells. The D1-like receptor agonist, fenoldopam (1 μmol/L per 20 minutes) dispersed Nox subunits within LRs and non-LRs and decreased oxidase activity (30.7±3.3%). In contrast, cholesterol depletion (2% methyl-β-cyclodextrin [βCD]) translocated NADPH oxidase subunits out of LRs and increased oxidase activity (154.0±10.5% versus control, 103.1±3.4%), which was reversed by cholesterol repletion (118.9±9.9%). Moreover, NADPH oxidase activation by βCD (145.5±9.0%; control98.6±1.6%) was also abrogated by the NADPH oxidase inhibitors apocynin (100.4±3.2%) and diphenylene iodonium (9.5±3.3%). Furthermore, βCD-induced reactive oxygen species production was reversed by knocking down either Nox2 (81.0±5.1% versus βCD162.0±2.0%) or Nox4 (108.0±10.8% versus βCD152.0±9.8%). We have demonstrated for the first time that disruption of LRs results in NADPH oxidase activation that is abolished by antioxidants and silencing of Nox2 or Nox4. Therefore, in human renal proximal tubule cells, LRs maintain NADPH oxidase in an inactive state.
doi_str_mv 10.1161/HYPERTENSIONAHA.107.103275
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70237154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70237154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6081-7b34beeb0a9beb54b8a48406129f7c8dabc2daa4043fd30ed55ff087662d54fa3</originalsourceid><addsrcrecordid>eNpdkF9v0zAUxS0EYmXwFZCFxN4yfP0nTnirSiHVqrbqisSeLDu5VgNpUuJkG98es1YgYcm-1tHv3nt0CHkH7BoghQ_F3Wa-3c1Xt4v1alpMr4HpeAXX6hmZgOIykSoVz8mEQS6THODbBXkVwnfGQEqpX5ILyCBXoPIJuVvWx7qiW-uHQG8Qj3Q1_bQp6PqxrmxAWrd02CNdtLYc6nukt4MdntRiPNiWbrG1Dd303WN9iJ_d6MYG6QybJrwmL7xtAr4510vy9fN8NyuS5frLYjZdJmXKMki0E9IhOmZzh05Jl1mZSZYCz70us8q6klfWSiaFrwTDSinvWabTlFdKeisuydVp7rHvfo4YBnOoQxkd2Ba7MRjNuNCgZAQ_nsCy70Lo0ZtjH133vwww8ydY81-wUdfmFGxsfnveMroDVv9az0lG4P0ZsKG0je9tW9bhL8cZjzaUiJw8cQ9dM2AffjTjA_Zmj7YZ9obFI3maJZyxjMUHkqgAiN9hNJHj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70237154</pqid></control><display><type>article</type><title>Lipid Rafts Keep NADPH Oxidase in the Inactive State in Human Renal Proximal Tubule Cells</title><source>EZB Free E-Journals</source><creator>Han, Weixing ; Li, Hewang ; Villar, Van Anthony M ; Pascua, Annabelle M ; Dajani, Mustafa I ; Wang, Xiaoyang ; Natarajan, Aruna ; Quinn, Mark T ; Felder, Robin A ; Jose, Pedro A ; Yu, Peiying</creator><creatorcontrib>Han, Weixing ; Li, Hewang ; Villar, Van Anthony M ; Pascua, Annabelle M ; Dajani, Mustafa I ; Wang, Xiaoyang ; Natarajan, Aruna ; Quinn, Mark T ; Felder, Robin A ; Jose, Pedro A ; Yu, Peiying</creatorcontrib><description>Recent studies have indicated the importance of cholesterol-rich membrane lipid rafts (LRs) in oxidative stress-induced signal transduction. Reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases, the major sources of reactive oxygen species, are implicated in cardiovascular diseases, including hypertension. We tested the hypothesis that NADPH oxidase subunits and activity are regulated by LRs in human renal proximal tubule cells. We report that a high proportion of p22 and the small GTPase Rac1 are expressed in LRs in human renal proximal tubule cells. The D1-like receptor agonist, fenoldopam (1 μmol/L per 20 minutes) dispersed Nox subunits within LRs and non-LRs and decreased oxidase activity (30.7±3.3%). In contrast, cholesterol depletion (2% methyl-β-cyclodextrin [βCD]) translocated NADPH oxidase subunits out of LRs and increased oxidase activity (154.0±10.5% versus control, 103.1±3.4%), which was reversed by cholesterol repletion (118.9±9.9%). Moreover, NADPH oxidase activation by βCD (145.5±9.0%; control98.6±1.6%) was also abrogated by the NADPH oxidase inhibitors apocynin (100.4±3.2%) and diphenylene iodonium (9.5±3.3%). Furthermore, βCD-induced reactive oxygen species production was reversed by knocking down either Nox2 (81.0±5.1% versus βCD162.0±2.0%) or Nox4 (108.0±10.8% versus βCD152.0±9.8%). We have demonstrated for the first time that disruption of LRs results in NADPH oxidase activation that is abolished by antioxidants and silencing of Nox2 or Nox4. Therefore, in human renal proximal tubule cells, LRs maintain NADPH oxidase in an inactive state.</description><identifier>ISSN: 0194-911X</identifier><identifier>EISSN: 1524-4563</identifier><identifier>DOI: 10.1161/HYPERTENSIONAHA.107.103275</identifier><identifier>PMID: 18195159</identifier><identifier>CODEN: HPRTDN</identifier><language>eng</language><publisher>Philadelphia, PA: American Heart Association, Inc</publisher><subject>Acetophenones - pharmacology ; Arterial hypertension. Arterial hypotension ; beta-Cyclodextrins - pharmacology ; Biological and medical sciences ; Blood and lymphatic vessels ; Blood vessels and receptors ; Cardiology. Vascular system ; Cell Membrane - enzymology ; Cholesterol - metabolism ; Dopamine Agonists - pharmacology ; Enzyme Activation - drug effects ; Enzyme Inhibitors - pharmacology ; Fenoldopam - pharmacology ; Fundamental and applied biological sciences. Psychology ; Humans ; Immunoblotting ; Isoenzymes - genetics ; Kidney Tubules, Proximal - cytology ; Kidney Tubules, Proximal - enzymology ; Medical sciences ; Membrane Glycoproteins - antagonists &amp; inhibitors ; Membrane Glycoproteins - genetics ; Membrane Microdomains - physiology ; NADPH Oxidase 2 ; NADPH Oxidase 4 ; NADPH Oxidases - antagonists &amp; inhibitors ; NADPH Oxidases - genetics ; NADPH Oxidases - metabolism ; Onium Compounds - pharmacology ; Reactive Oxygen Species - metabolism ; Receptors, Dopamine D1 - agonists ; RNA, Messenger - metabolism ; RNA, Small Interfering - pharmacology ; Vertebrates: cardiovascular system</subject><ispartof>Hypertension (Dallas, Tex. 1979), 2008-02, Vol.51 (2, Part 2), p.481-487</ispartof><rights>2008 American Heart Association, Inc.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6081-7b34beeb0a9beb54b8a48406129f7c8dabc2daa4043fd30ed55ff087662d54fa3</citedby><cites>FETCH-LOGICAL-c6081-7b34beeb0a9beb54b8a48406129f7c8dabc2daa4043fd30ed55ff087662d54fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20223753$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18195159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Weixing</creatorcontrib><creatorcontrib>Li, Hewang</creatorcontrib><creatorcontrib>Villar, Van Anthony M</creatorcontrib><creatorcontrib>Pascua, Annabelle M</creatorcontrib><creatorcontrib>Dajani, Mustafa I</creatorcontrib><creatorcontrib>Wang, Xiaoyang</creatorcontrib><creatorcontrib>Natarajan, Aruna</creatorcontrib><creatorcontrib>Quinn, Mark T</creatorcontrib><creatorcontrib>Felder, Robin A</creatorcontrib><creatorcontrib>Jose, Pedro A</creatorcontrib><creatorcontrib>Yu, Peiying</creatorcontrib><title>Lipid Rafts Keep NADPH Oxidase in the Inactive State in Human Renal Proximal Tubule Cells</title><title>Hypertension (Dallas, Tex. 1979)</title><addtitle>Hypertension</addtitle><description>Recent studies have indicated the importance of cholesterol-rich membrane lipid rafts (LRs) in oxidative stress-induced signal transduction. Reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases, the major sources of reactive oxygen species, are implicated in cardiovascular diseases, including hypertension. We tested the hypothesis that NADPH oxidase subunits and activity are regulated by LRs in human renal proximal tubule cells. We report that a high proportion of p22 and the small GTPase Rac1 are expressed in LRs in human renal proximal tubule cells. The D1-like receptor agonist, fenoldopam (1 μmol/L per 20 minutes) dispersed Nox subunits within LRs and non-LRs and decreased oxidase activity (30.7±3.3%). In contrast, cholesterol depletion (2% methyl-β-cyclodextrin [βCD]) translocated NADPH oxidase subunits out of LRs and increased oxidase activity (154.0±10.5% versus control, 103.1±3.4%), which was reversed by cholesterol repletion (118.9±9.9%). Moreover, NADPH oxidase activation by βCD (145.5±9.0%; control98.6±1.6%) was also abrogated by the NADPH oxidase inhibitors apocynin (100.4±3.2%) and diphenylene iodonium (9.5±3.3%). Furthermore, βCD-induced reactive oxygen species production was reversed by knocking down either Nox2 (81.0±5.1% versus βCD162.0±2.0%) or Nox4 (108.0±10.8% versus βCD152.0±9.8%). We have demonstrated for the first time that disruption of LRs results in NADPH oxidase activation that is abolished by antioxidants and silencing of Nox2 or Nox4. Therefore, in human renal proximal tubule cells, LRs maintain NADPH oxidase in an inactive state.</description><subject>Acetophenones - pharmacology</subject><subject>Arterial hypertension. Arterial hypotension</subject><subject>beta-Cyclodextrins - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Blood and lymphatic vessels</subject><subject>Blood vessels and receptors</subject><subject>Cardiology. Vascular system</subject><subject>Cell Membrane - enzymology</subject><subject>Cholesterol - metabolism</subject><subject>Dopamine Agonists - pharmacology</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Fenoldopam - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Immunoblotting</subject><subject>Isoenzymes - genetics</subject><subject>Kidney Tubules, Proximal - cytology</subject><subject>Kidney Tubules, Proximal - enzymology</subject><subject>Medical sciences</subject><subject>Membrane Glycoproteins - antagonists &amp; inhibitors</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Membrane Microdomains - physiology</subject><subject>NADPH Oxidase 2</subject><subject>NADPH Oxidase 4</subject><subject>NADPH Oxidases - antagonists &amp; inhibitors</subject><subject>NADPH Oxidases - genetics</subject><subject>NADPH Oxidases - metabolism</subject><subject>Onium Compounds - pharmacology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Receptors, Dopamine D1 - agonists</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Small Interfering - pharmacology</subject><subject>Vertebrates: cardiovascular system</subject><issn>0194-911X</issn><issn>1524-4563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpdkF9v0zAUxS0EYmXwFZCFxN4yfP0nTnirSiHVqrbqisSeLDu5VgNpUuJkG98es1YgYcm-1tHv3nt0CHkH7BoghQ_F3Wa-3c1Xt4v1alpMr4HpeAXX6hmZgOIykSoVz8mEQS6THODbBXkVwnfGQEqpX5ILyCBXoPIJuVvWx7qiW-uHQG8Qj3Q1_bQp6PqxrmxAWrd02CNdtLYc6nukt4MdntRiPNiWbrG1Dd303WN9iJ_d6MYG6QybJrwmL7xtAr4510vy9fN8NyuS5frLYjZdJmXKMki0E9IhOmZzh05Jl1mZSZYCz70us8q6klfWSiaFrwTDSinvWabTlFdKeisuydVp7rHvfo4YBnOoQxkd2Ba7MRjNuNCgZAQ_nsCy70Lo0ZtjH133vwww8ydY81-wUdfmFGxsfnveMroDVv9az0lG4P0ZsKG0je9tW9bhL8cZjzaUiJw8cQ9dM2AffjTjA_Zmj7YZ9obFI3maJZyxjMUHkqgAiN9hNJHj</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Han, Weixing</creator><creator>Li, Hewang</creator><creator>Villar, Van Anthony M</creator><creator>Pascua, Annabelle M</creator><creator>Dajani, Mustafa I</creator><creator>Wang, Xiaoyang</creator><creator>Natarajan, Aruna</creator><creator>Quinn, Mark T</creator><creator>Felder, Robin A</creator><creator>Jose, Pedro A</creator><creator>Yu, Peiying</creator><general>American Heart Association, Inc</general><general>Lippincott</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200802</creationdate><title>Lipid Rafts Keep NADPH Oxidase in the Inactive State in Human Renal Proximal Tubule Cells</title><author>Han, Weixing ; Li, Hewang ; Villar, Van Anthony M ; Pascua, Annabelle M ; Dajani, Mustafa I ; Wang, Xiaoyang ; Natarajan, Aruna ; Quinn, Mark T ; Felder, Robin A ; Jose, Pedro A ; Yu, Peiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6081-7b34beeb0a9beb54b8a48406129f7c8dabc2daa4043fd30ed55ff087662d54fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acetophenones - pharmacology</topic><topic>Arterial hypertension. Arterial hypotension</topic><topic>beta-Cyclodextrins - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Blood and lymphatic vessels</topic><topic>Blood vessels and receptors</topic><topic>Cardiology. Vascular system</topic><topic>Cell Membrane - enzymology</topic><topic>Cholesterol - metabolism</topic><topic>Dopamine Agonists - pharmacology</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Fenoldopam - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Immunoblotting</topic><topic>Isoenzymes - genetics</topic><topic>Kidney Tubules, Proximal - cytology</topic><topic>Kidney Tubules, Proximal - enzymology</topic><topic>Medical sciences</topic><topic>Membrane Glycoproteins - antagonists &amp; inhibitors</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Membrane Microdomains - physiology</topic><topic>NADPH Oxidase 2</topic><topic>NADPH Oxidase 4</topic><topic>NADPH Oxidases - antagonists &amp; inhibitors</topic><topic>NADPH Oxidases - genetics</topic><topic>NADPH Oxidases - metabolism</topic><topic>Onium Compounds - pharmacology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Receptors, Dopamine D1 - agonists</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Small Interfering - pharmacology</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Weixing</creatorcontrib><creatorcontrib>Li, Hewang</creatorcontrib><creatorcontrib>Villar, Van Anthony M</creatorcontrib><creatorcontrib>Pascua, Annabelle M</creatorcontrib><creatorcontrib>Dajani, Mustafa I</creatorcontrib><creatorcontrib>Wang, Xiaoyang</creatorcontrib><creatorcontrib>Natarajan, Aruna</creatorcontrib><creatorcontrib>Quinn, Mark T</creatorcontrib><creatorcontrib>Felder, Robin A</creatorcontrib><creatorcontrib>Jose, Pedro A</creatorcontrib><creatorcontrib>Yu, Peiying</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Hypertension (Dallas, Tex. 1979)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Weixing</au><au>Li, Hewang</au><au>Villar, Van Anthony M</au><au>Pascua, Annabelle M</au><au>Dajani, Mustafa I</au><au>Wang, Xiaoyang</au><au>Natarajan, Aruna</au><au>Quinn, Mark T</au><au>Felder, Robin A</au><au>Jose, Pedro A</au><au>Yu, Peiying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipid Rafts Keep NADPH Oxidase in the Inactive State in Human Renal Proximal Tubule Cells</atitle><jtitle>Hypertension (Dallas, Tex. 1979)</jtitle><addtitle>Hypertension</addtitle><date>2008-02</date><risdate>2008</risdate><volume>51</volume><issue>2, Part 2</issue><spage>481</spage><epage>487</epage><pages>481-487</pages><issn>0194-911X</issn><eissn>1524-4563</eissn><coden>HPRTDN</coden><abstract>Recent studies have indicated the importance of cholesterol-rich membrane lipid rafts (LRs) in oxidative stress-induced signal transduction. Reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases, the major sources of reactive oxygen species, are implicated in cardiovascular diseases, including hypertension. We tested the hypothesis that NADPH oxidase subunits and activity are regulated by LRs in human renal proximal tubule cells. We report that a high proportion of p22 and the small GTPase Rac1 are expressed in LRs in human renal proximal tubule cells. The D1-like receptor agonist, fenoldopam (1 μmol/L per 20 minutes) dispersed Nox subunits within LRs and non-LRs and decreased oxidase activity (30.7±3.3%). In contrast, cholesterol depletion (2% methyl-β-cyclodextrin [βCD]) translocated NADPH oxidase subunits out of LRs and increased oxidase activity (154.0±10.5% versus control, 103.1±3.4%), which was reversed by cholesterol repletion (118.9±9.9%). Moreover, NADPH oxidase activation by βCD (145.5±9.0%; control98.6±1.6%) was also abrogated by the NADPH oxidase inhibitors apocynin (100.4±3.2%) and diphenylene iodonium (9.5±3.3%). Furthermore, βCD-induced reactive oxygen species production was reversed by knocking down either Nox2 (81.0±5.1% versus βCD162.0±2.0%) or Nox4 (108.0±10.8% versus βCD152.0±9.8%). We have demonstrated for the first time that disruption of LRs results in NADPH oxidase activation that is abolished by antioxidants and silencing of Nox2 or Nox4. Therefore, in human renal proximal tubule cells, LRs maintain NADPH oxidase in an inactive state.</abstract><cop>Philadelphia, PA</cop><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>18195159</pmid><doi>10.1161/HYPERTENSIONAHA.107.103275</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0194-911X
ispartof Hypertension (Dallas, Tex. 1979), 2008-02, Vol.51 (2, Part 2), p.481-487
issn 0194-911X
1524-4563
language eng
recordid cdi_proquest_miscellaneous_70237154
source EZB Free E-Journals
subjects Acetophenones - pharmacology
Arterial hypertension. Arterial hypotension
beta-Cyclodextrins - pharmacology
Biological and medical sciences
Blood and lymphatic vessels
Blood vessels and receptors
Cardiology. Vascular system
Cell Membrane - enzymology
Cholesterol - metabolism
Dopamine Agonists - pharmacology
Enzyme Activation - drug effects
Enzyme Inhibitors - pharmacology
Fenoldopam - pharmacology
Fundamental and applied biological sciences. Psychology
Humans
Immunoblotting
Isoenzymes - genetics
Kidney Tubules, Proximal - cytology
Kidney Tubules, Proximal - enzymology
Medical sciences
Membrane Glycoproteins - antagonists & inhibitors
Membrane Glycoproteins - genetics
Membrane Microdomains - physiology
NADPH Oxidase 2
NADPH Oxidase 4
NADPH Oxidases - antagonists & inhibitors
NADPH Oxidases - genetics
NADPH Oxidases - metabolism
Onium Compounds - pharmacology
Reactive Oxygen Species - metabolism
Receptors, Dopamine D1 - agonists
RNA, Messenger - metabolism
RNA, Small Interfering - pharmacology
Vertebrates: cardiovascular system
title Lipid Rafts Keep NADPH Oxidase in the Inactive State in Human Renal Proximal Tubule Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipid%20Rafts%20Keep%20NADPH%20Oxidase%20in%20the%20Inactive%20State%20in%20Human%20Renal%20Proximal%20Tubule%20Cells&rft.jtitle=Hypertension%20(Dallas,%20Tex.%201979)&rft.au=Han,%20Weixing&rft.date=2008-02&rft.volume=51&rft.issue=2,%20Part%202&rft.spage=481&rft.epage=487&rft.pages=481-487&rft.issn=0194-911X&rft.eissn=1524-4563&rft.coden=HPRTDN&rft_id=info:doi/10.1161/HYPERTENSIONAHA.107.103275&rft_dat=%3Cproquest_cross%3E70237154%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6081-7b34beeb0a9beb54b8a48406129f7c8dabc2daa4043fd30ed55ff087662d54fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70237154&rft_id=info:pmid/18195159&rfr_iscdi=true