Loading…
Structure and dynamics of confined foams: A review of recent progress
Basic research on confined foams now points to an interesting application, a kind of microfluidics which deals with the manipulation of closely packed droplets or bubbles flowing in channels. In such systems, the minimisation of interfacial energy leads to self-organised ordering which is tightly co...
Saved in:
Published in: | Advances in colloid and interface science 2008-02, Vol.137 (1), p.20-26 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Basic research on confined foams now points to an interesting application, a kind of microfluidics which deals with the manipulation of closely packed droplets or bubbles flowing in channels. In such systems, the minimisation of interfacial energy leads to self-organised ordering which is tightly coupled to the channel geometry, hence providing efficient means of performing controlled topological operations on droplet and bubbles structures. We have called this
discrete microfluidics, and have begun to explore its possibilities and principles. Apart from the fact that such systems provide powerful tools to study the flow of foams and emulsions on the scale of a few bubbles or droplets, they also carry the promise of versatile applications for Lab-on-a-Chip technologies. In these, discrete gas or liquid samples can be generated, processed, stored and analysed within a single handheld chip. Previous work on foams and emulsions in confined geometries provides a basis for this, and is being extended progressively by new experiments and appropriate dynamic models, such as the 2d Viscous Froth Model. The result should be a practical “design kit” for more complex networks to efficiently process discrete gas and fluid samples. |
---|---|
ISSN: | 0001-8686 1873-3727 |
DOI: | 10.1016/j.cis.2007.04.001 |