Loading…
Microfluidic mixing via acoustically driven chaotic advection
Mixing presents a notoriously difficult problem in small amounts of fluids. Herein, surface acoustic waves provide a convenient technique to generate time-dependent flow patterns. These flow patterns can be optimized in such a way that advected particles are mixed most efficiently in the fluid withi...
Saved in:
Published in: | Physical review letters 2008-01, Vol.100 (3), p.034502-034502, Article 034502 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mixing presents a notoriously difficult problem in small amounts of fluids. Herein, surface acoustic waves provide a convenient technique to generate time-dependent flow patterns. These flow patterns can be optimized in such a way that advected particles are mixed most efficiently in the fluid within a short time compared to the time pure diffusion would take. Investigations are presented for the mixing efficiency of a flat cylinder that is driven by two surface acoustic waves. The experimental results favorably agree with model calculations of the flow patterns and the advective transport. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.100.034502 |