Loading…
Resveratrol Inhibits Pancreatic Cancer Cell Proliferation Through Transcriptional Induction of Macrophage Inhibitory Cytokine-1
Introduction Resveratrol is a phenolic compound found in grape skins, mulberries, and certain nuts that has been shown to have antitumorigenic and anti-inflammatory properties. Macrophage inhibitory cytokine (MIC-1) is a member of the transforming growth factor beta (TGF-β) superfamily that has been...
Saved in:
Published in: | The Journal of surgical research 2007-04, Vol.138 (2), p.163-169 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Introduction Resveratrol is a phenolic compound found in grape skins, mulberries, and certain nuts that has been shown to have antitumorigenic and anti-inflammatory properties. Macrophage inhibitory cytokine (MIC-1) is a member of the transforming growth factor beta (TGF-β) superfamily that has been shown to have antitumorigenic activity and is up-regulated in resveratrol-treated cancer cells. Resveratrol inhibits proliferation of human pancreatic cancer cells; however, the exact mechanism of action is not known. In this study, we investigated the role of MIC-1 in resveratrol-induced growth inhibition of human pancreatic cancer cell lines. Methods and results Proliferation assays conducted with resveratrol-treated human pancreatic cancer cell lines (CD18 and S2-013) at 24, 48, and 72 h revealed inhibition of cell proliferation compared to controls. Using oligonucleotide microarray analysis, we identified marked up-regulation of MIC-1 gene expression in resveratrol-treated human pancreatic cancer S2-013 cells. Real-time RT-PCR performed in CD18 and S2-013 cells treated with resveratrol (0-100 μm) for 24 h confirmed concentration and time-dependent up-regulation of expression of one particular gene, MIC-1. Both cell lines pretreated with actinomycin D (a transcriptional inhibitor) and then resveratrol had reduced up-regulation of MIC-1 gene expression compared to those treated with resveratrol alone. Finally, resveratrol-induced growth inhibition was abolished in CD18 cells transfected with MIC-1 short interfering RNA. Conclusions Resveratrol up-regulates MIC-1 gene expression in part at the transcriptional level in pancreatic cancer cells. Furthermore, MIC-1 appears to play a key role in resveratrol-induced growth inhibition in these cells. |
---|---|
ISSN: | 0022-4804 1095-8673 |
DOI: | 10.1016/j.jss.2006.05.037 |