Loading…

Effect of Nanoscale Curvature of Single-Walled Carbon Nanotubes on Adsorption of Polycyclic Aromatic Hydrocarbons

Liquid-phase adsorption of tetracene and phenanthrene on a single-walled carbon nanotube (SWCNT) was examined. Tetracene adsorption was more than six times greater than that of phenanthrene. X-ray photoelectron spectroscopic examination clearly showed that tetracene and phenanthrene molecules effici...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2007-03, Vol.7 (3), p.583-587
Main Authors: Gotovac, Suzana, Honda, Hiroaki, Hattori, Yoshiyuki, Takahashi, Kunimitsu, Kanoh, Hirofumi, Kaneko, Katsumi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Liquid-phase adsorption of tetracene and phenanthrene on a single-walled carbon nanotube (SWCNT) was examined. Tetracene adsorption was more than six times greater than that of phenanthrene. X-ray photoelectron spectroscopic examination clearly showed that tetracene and phenanthrene molecules efficiently coated the SWCNT external surfaces. The remarkable difference between the adsorption amounts of tetracene and phenanthrene was caused by the nanoscale curvature effect of the tube surface, resulting in a difference in the amount of contact between the molecule and the tube surface. The adsorption of tetracene and phenanthrene caused a significant higher frequency shift in the radial breathing mode (RBM) of the Raman band of the SWCNT, indicating an intensive π−π interaction between these polycyclic aromatic hydrocarbons and the external SWCNT surface.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl0622597