Loading…

Arabidopsis Purple Acid Phosphatase with Phytase Activity Increases Foliar Ascorbate

Ascorbate (AsA) is the most abundant antioxidant in plant cells and a cofactor for a large number of key enzymes. However, the mechanism of how AsA levels are regulated in plant cells remains unknown. The Arabidopsis (Arabidopsis thaliana) activation-tagged mutant AT23040 showed a pleiotropic phenot...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2008-02, Vol.146 (2), p.431-440
Main Authors: Zhang, Wenyan, Gruszewski, Hope A, Chevone, Boris I, Nessler, Craig L
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ascorbate (AsA) is the most abundant antioxidant in plant cells and a cofactor for a large number of key enzymes. However, the mechanism of how AsA levels are regulated in plant cells remains unknown. The Arabidopsis (Arabidopsis thaliana) activation-tagged mutant AT23040 showed a pleiotropic phenotype, including ozone resistance, rapid growth, and leaves containing higher AsA than wild-type plants. The phenotype was caused by activation of a purple acid phosphatase (PAP) gene, AtPAP15, which contains a dinuclear metal center in the active site. AtPAP15 was universally expressed in all tested organs in wild-type plants. Overexpression of AtPAP15 with the 35S cauliflower mosaic virus promoter produced mutants with up to 2-fold increased foliar AsA, 20% to 30% decrease in foliar phytate, enhanced salt tolerance, and decreased abscisic acid sensitivity. Two independent SALK T-DNA insertion mutants in AtPAP15 had 30% less foliar AsA and 15% to 20% more phytate than wild-type plants and decreased tolerance to abiotic stresses. Enzyme activity of partially purified AtPAP15 from plant crude extract and recombinant AtPAP15 expressed in bacteria and yeast was highest when phytate was used as substrate, indicating that AtPAP15 is a phytase. Recombinant AtPAP15 also showed enzyme activity on the substrate myoinositol-1-phosphate, indicating that the AtPAP15 is a phytase that hydrolyzes myoinositol hexakisphosphate to yield myoinositol and free phosphate. Myoinositol is a known precursor for AsA biosynthesis in plants. Thus, AtPAP15 may modulate AsA levels by controlling the input of myoinositol into this branch of AsA biosynthesis in Arabidopsis.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.107.109934