Loading…

Ordering in spatially anisotropic triangular antiferromagnets

We investigate the phase diagram of the anisotropic spin-1/2 triangular lattice antiferromagnet, with interchain diagonal exchange J' much weaker than the intrachain exchange J. We find that fluctuations lead to a competition between (commensurate) collinear antiferromagnetic and (zigzag) dimer...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2007-02, Vol.98 (7), p.077205-077205, Article 077205
Main Authors: Starykh, Oleg A, Balents, Leon
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the phase diagram of the anisotropic spin-1/2 triangular lattice antiferromagnet, with interchain diagonal exchange J' much weaker than the intrachain exchange J. We find that fluctuations lead to a competition between (commensurate) collinear antiferromagnetic and (zigzag) dimer orders. Both states differ in symmetry from the spiral order known to occur for larger J', and are therefore separated by quantum phase transitions from it. The zero-field collinear antiferromagnet is succeeded in a magnetic field by magnetically ordered spin-density-wave and cone phases, before reaching the fully polarized state. Implications for the anisotropic triangular magnet Cs2CuCl4 are discussed.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.98.077205