Loading…

Rhodium-Complex-Catalyzed Asymmetric Hydrogenation: Transformation of Precatalysts into Active Species

The use of diolefin‐containing rhodium precatalysts leads to induction periods in asymmetric hydrogenation of prochiral olefins. Consequently, the reaction rate increases in the beginning. The induction period is caused by the fact that some of the catalyst is blocked by the diolefin and thus not av...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2008-02, Vol.14 (5), p.1445-1451
Main Authors: Preetz, Angelika, Drexler, Hans-Joachim, Fischer, Christian, Dai, Zhenya, Börner, Armin, Baumann, Wolfgang, Spannenberg, Anke, Thede, Richard, Heller, Detlef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4140-4097a7d1375e09abf590b29196d0a5c1420a35c1565c4bdcdf6c7abf1ceeac283
cites cdi_FETCH-LOGICAL-c4140-4097a7d1375e09abf590b29196d0a5c1420a35c1565c4bdcdf6c7abf1ceeac283
container_end_page 1451
container_issue 5
container_start_page 1445
container_title Chemistry : a European journal
container_volume 14
creator Preetz, Angelika
Drexler, Hans-Joachim
Fischer, Christian
Dai, Zhenya
Börner, Armin
Baumann, Wolfgang
Spannenberg, Anke
Thede, Richard
Heller, Detlef
description The use of diolefin‐containing rhodium precatalysts leads to induction periods in asymmetric hydrogenation of prochiral olefins. Consequently, the reaction rate increases in the beginning. The induction period is caused by the fact that some of the catalyst is blocked by the diolefin and thus not available for hydrogenation of the prochiral olefin. Therefore, the maximum reaction rate cannot be reached initially. Due to the relatively slow hydrogenation of cyclooctadiene (cod) the share of active catalysts increases at first, and this leads to typical induction periods. The aim of this work is to quantify the hydrogenation of the diolefins cyclooctadiene (cod) and norborna‐2,5‐diene (nbd) for cationic complexes of the type [Rh(ligand)(diolefin)]BF4 for the ligands Binap (1,1′‐binaphthalene‐2,2′‐diylbis(phenylphosphine)), Me‐Duphos (1,2‐bis(2,5‐dimethylphospholano)benzene, and Catasium in the solvents methanol, THF, and propylene carbonate. Furthermore, an approach is presented to determine the desired rate constant and the resulting respective pre‐hydrogenation time from stoichiometric hydrogenations of the diolefin complexes via UV/Vis spectroscopy. This method is especially useful for very slow diolefin hydrogenations (e.g., cod hydrogenation with the ligands Me‐Duphos, Et‐Duphos (1,2‐bis(2,5‐diethylphospholano)benzene), and dppe (1,2‐bis(diphenylphosphino)ethane). No need to wait: Rate constants of diolefin hydrogenations with cationic rhodium complexes in different solvents have been determined by monitoring hydrogen consumption (catalytic) and UV/Vis spectra (stoichiometric), to afford prehydrogenation times of corresponding diolefin complexes and thus avoid induction periods in asymmetric hydrogenations. The picture shows the UV/Vis reaction spectrum for the stoichiometric hydrogenation of [Rh(Me‐Duphos)(cod)]BF4.
doi_str_mv 10.1002/chem.200701150
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70271894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70271894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4140-4097a7d1375e09abf590b29196d0a5c1420a35c1565c4bdcdf6c7abf1ceeac283</originalsourceid><addsrcrecordid>eNqFkMFP2zAUxi20CTq2K8cpp93SPcd2XHPrIqCTykAb0yQuluu8DLM47ux0I_z1BFrBbnuXT0_6fd_hR8gRhSkFKD7aG_TTAkACpQL2yISKguZMluIVmYDiMi8FUwfkTUq3AKBKxvbJAZ0B4-NNSPP1JtRu4_Mq-HWLd3lletMO91hn8zR4j310NlsMdQw_sTO9C91xdhVNl5oQ_dOfhSa7jGifiqlPmev6kM1t7_5g9m2N1mF6S143pk34bpeH5PvpyVW1yJcXZ5-r-TK3nHLIOShpZE2ZFAjKrBqhYFUoqsoajLCUF2DYmKIUlq9qWzellSNGLaKxxYwdkg_b3XUMvzeYeu1dsti2psOwSVpCIelM8RGcbkEbQ0oRG72Ozps4aAr60ax-NKufzY6F97vlzcpj_YLvVI6A2gJ_XYvDf-Z0tTg5_3c833Zd6vHuuWviL13KUYb-8eVMsyW_XsjTT5qxBxzsljw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70271894</pqid></control><display><type>article</type><title>Rhodium-Complex-Catalyzed Asymmetric Hydrogenation: Transformation of Precatalysts into Active Species</title><source>Wiley</source><creator>Preetz, Angelika ; Drexler, Hans-Joachim ; Fischer, Christian ; Dai, Zhenya ; Börner, Armin ; Baumann, Wolfgang ; Spannenberg, Anke ; Thede, Richard ; Heller, Detlef</creator><creatorcontrib>Preetz, Angelika ; Drexler, Hans-Joachim ; Fischer, Christian ; Dai, Zhenya ; Börner, Armin ; Baumann, Wolfgang ; Spannenberg, Anke ; Thede, Richard ; Heller, Detlef</creatorcontrib><description>The use of diolefin‐containing rhodium precatalysts leads to induction periods in asymmetric hydrogenation of prochiral olefins. Consequently, the reaction rate increases in the beginning. The induction period is caused by the fact that some of the catalyst is blocked by the diolefin and thus not available for hydrogenation of the prochiral olefin. Therefore, the maximum reaction rate cannot be reached initially. Due to the relatively slow hydrogenation of cyclooctadiene (cod) the share of active catalysts increases at first, and this leads to typical induction periods. The aim of this work is to quantify the hydrogenation of the diolefins cyclooctadiene (cod) and norborna‐2,5‐diene (nbd) for cationic complexes of the type [Rh(ligand)(diolefin)]BF4 for the ligands Binap (1,1′‐binaphthalene‐2,2′‐diylbis(phenylphosphine)), Me‐Duphos (1,2‐bis(2,5‐dimethylphospholano)benzene, and Catasium in the solvents methanol, THF, and propylene carbonate. Furthermore, an approach is presented to determine the desired rate constant and the resulting respective pre‐hydrogenation time from stoichiometric hydrogenations of the diolefin complexes via UV/Vis spectroscopy. This method is especially useful for very slow diolefin hydrogenations (e.g., cod hydrogenation with the ligands Me‐Duphos, Et‐Duphos (1,2‐bis(2,5‐diethylphospholano)benzene), and dppe (1,2‐bis(diphenylphosphino)ethane). No need to wait: Rate constants of diolefin hydrogenations with cationic rhodium complexes in different solvents have been determined by monitoring hydrogen consumption (catalytic) and UV/Vis spectra (stoichiometric), to afford prehydrogenation times of corresponding diolefin complexes and thus avoid induction periods in asymmetric hydrogenations. The picture shows the UV/Vis reaction spectrum for the stoichiometric hydrogenation of [Rh(Me‐Duphos)(cod)]BF4.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.200701150</identifier><identifier>PMID: 18034444</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Alkenes - chemistry ; asymmetric catalysis ; Catalysis ; Furans - chemistry ; Hydrogenation ; Kinetics ; Ligands ; Methanol - chemistry ; Molecular Structure ; Organometallic Compounds - chemistry ; Phosphines - chemical synthesis ; Propane - analogs &amp; derivatives ; Propane - chemistry ; rhodium ; Rhodium - chemistry ; Solvents - chemistry ; Spectrophotometry, Ultraviolet ; Stereoisomerism ; UV/Vis spectroscopy</subject><ispartof>Chemistry : a European journal, 2008-02, Vol.14 (5), p.1445-1451</ispartof><rights>Copyright © 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4140-4097a7d1375e09abf590b29196d0a5c1420a35c1565c4bdcdf6c7abf1ceeac283</citedby><cites>FETCH-LOGICAL-c4140-4097a7d1375e09abf590b29196d0a5c1420a35c1565c4bdcdf6c7abf1ceeac283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18034444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Preetz, Angelika</creatorcontrib><creatorcontrib>Drexler, Hans-Joachim</creatorcontrib><creatorcontrib>Fischer, Christian</creatorcontrib><creatorcontrib>Dai, Zhenya</creatorcontrib><creatorcontrib>Börner, Armin</creatorcontrib><creatorcontrib>Baumann, Wolfgang</creatorcontrib><creatorcontrib>Spannenberg, Anke</creatorcontrib><creatorcontrib>Thede, Richard</creatorcontrib><creatorcontrib>Heller, Detlef</creatorcontrib><title>Rhodium-Complex-Catalyzed Asymmetric Hydrogenation: Transformation of Precatalysts into Active Species</title><title>Chemistry : a European journal</title><addtitle>Chemistry - A European Journal</addtitle><description>The use of diolefin‐containing rhodium precatalysts leads to induction periods in asymmetric hydrogenation of prochiral olefins. Consequently, the reaction rate increases in the beginning. The induction period is caused by the fact that some of the catalyst is blocked by the diolefin and thus not available for hydrogenation of the prochiral olefin. Therefore, the maximum reaction rate cannot be reached initially. Due to the relatively slow hydrogenation of cyclooctadiene (cod) the share of active catalysts increases at first, and this leads to typical induction periods. The aim of this work is to quantify the hydrogenation of the diolefins cyclooctadiene (cod) and norborna‐2,5‐diene (nbd) for cationic complexes of the type [Rh(ligand)(diolefin)]BF4 for the ligands Binap (1,1′‐binaphthalene‐2,2′‐diylbis(phenylphosphine)), Me‐Duphos (1,2‐bis(2,5‐dimethylphospholano)benzene, and Catasium in the solvents methanol, THF, and propylene carbonate. Furthermore, an approach is presented to determine the desired rate constant and the resulting respective pre‐hydrogenation time from stoichiometric hydrogenations of the diolefin complexes via UV/Vis spectroscopy. This method is especially useful for very slow diolefin hydrogenations (e.g., cod hydrogenation with the ligands Me‐Duphos, Et‐Duphos (1,2‐bis(2,5‐diethylphospholano)benzene), and dppe (1,2‐bis(diphenylphosphino)ethane). No need to wait: Rate constants of diolefin hydrogenations with cationic rhodium complexes in different solvents have been determined by monitoring hydrogen consumption (catalytic) and UV/Vis spectra (stoichiometric), to afford prehydrogenation times of corresponding diolefin complexes and thus avoid induction periods in asymmetric hydrogenations. The picture shows the UV/Vis reaction spectrum for the stoichiometric hydrogenation of [Rh(Me‐Duphos)(cod)]BF4.</description><subject>Alkenes - chemistry</subject><subject>asymmetric catalysis</subject><subject>Catalysis</subject><subject>Furans - chemistry</subject><subject>Hydrogenation</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Methanol - chemistry</subject><subject>Molecular Structure</subject><subject>Organometallic Compounds - chemistry</subject><subject>Phosphines - chemical synthesis</subject><subject>Propane - analogs &amp; derivatives</subject><subject>Propane - chemistry</subject><subject>rhodium</subject><subject>Rhodium - chemistry</subject><subject>Solvents - chemistry</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Stereoisomerism</subject><subject>UV/Vis spectroscopy</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMFP2zAUxi20CTq2K8cpp93SPcd2XHPrIqCTykAb0yQuluu8DLM47ux0I_z1BFrBbnuXT0_6fd_hR8gRhSkFKD7aG_TTAkACpQL2yISKguZMluIVmYDiMi8FUwfkTUq3AKBKxvbJAZ0B4-NNSPP1JtRu4_Mq-HWLd3lletMO91hn8zR4j310NlsMdQw_sTO9C91xdhVNl5oQ_dOfhSa7jGifiqlPmev6kM1t7_5g9m2N1mF6S143pk34bpeH5PvpyVW1yJcXZ5-r-TK3nHLIOShpZE2ZFAjKrBqhYFUoqsoajLCUF2DYmKIUlq9qWzellSNGLaKxxYwdkg_b3XUMvzeYeu1dsti2psOwSVpCIelM8RGcbkEbQ0oRG72Ozps4aAr60ax-NKufzY6F97vlzcpj_YLvVI6A2gJ_XYvDf-Z0tTg5_3c833Zd6vHuuWviL13KUYb-8eVMsyW_XsjTT5qxBxzsljw</recordid><startdate>20080208</startdate><enddate>20080208</enddate><creator>Preetz, Angelika</creator><creator>Drexler, Hans-Joachim</creator><creator>Fischer, Christian</creator><creator>Dai, Zhenya</creator><creator>Börner, Armin</creator><creator>Baumann, Wolfgang</creator><creator>Spannenberg, Anke</creator><creator>Thede, Richard</creator><creator>Heller, Detlef</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080208</creationdate><title>Rhodium-Complex-Catalyzed Asymmetric Hydrogenation: Transformation of Precatalysts into Active Species</title><author>Preetz, Angelika ; Drexler, Hans-Joachim ; Fischer, Christian ; Dai, Zhenya ; Börner, Armin ; Baumann, Wolfgang ; Spannenberg, Anke ; Thede, Richard ; Heller, Detlef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4140-4097a7d1375e09abf590b29196d0a5c1420a35c1565c4bdcdf6c7abf1ceeac283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alkenes - chemistry</topic><topic>asymmetric catalysis</topic><topic>Catalysis</topic><topic>Furans - chemistry</topic><topic>Hydrogenation</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Methanol - chemistry</topic><topic>Molecular Structure</topic><topic>Organometallic Compounds - chemistry</topic><topic>Phosphines - chemical synthesis</topic><topic>Propane - analogs &amp; derivatives</topic><topic>Propane - chemistry</topic><topic>rhodium</topic><topic>Rhodium - chemistry</topic><topic>Solvents - chemistry</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Stereoisomerism</topic><topic>UV/Vis spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Preetz, Angelika</creatorcontrib><creatorcontrib>Drexler, Hans-Joachim</creatorcontrib><creatorcontrib>Fischer, Christian</creatorcontrib><creatorcontrib>Dai, Zhenya</creatorcontrib><creatorcontrib>Börner, Armin</creatorcontrib><creatorcontrib>Baumann, Wolfgang</creatorcontrib><creatorcontrib>Spannenberg, Anke</creatorcontrib><creatorcontrib>Thede, Richard</creatorcontrib><creatorcontrib>Heller, Detlef</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Preetz, Angelika</au><au>Drexler, Hans-Joachim</au><au>Fischer, Christian</au><au>Dai, Zhenya</au><au>Börner, Armin</au><au>Baumann, Wolfgang</au><au>Spannenberg, Anke</au><au>Thede, Richard</au><au>Heller, Detlef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rhodium-Complex-Catalyzed Asymmetric Hydrogenation: Transformation of Precatalysts into Active Species</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry - A European Journal</addtitle><date>2008-02-08</date><risdate>2008</risdate><volume>14</volume><issue>5</issue><spage>1445</spage><epage>1451</epage><pages>1445-1451</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>The use of diolefin‐containing rhodium precatalysts leads to induction periods in asymmetric hydrogenation of prochiral olefins. Consequently, the reaction rate increases in the beginning. The induction period is caused by the fact that some of the catalyst is blocked by the diolefin and thus not available for hydrogenation of the prochiral olefin. Therefore, the maximum reaction rate cannot be reached initially. Due to the relatively slow hydrogenation of cyclooctadiene (cod) the share of active catalysts increases at first, and this leads to typical induction periods. The aim of this work is to quantify the hydrogenation of the diolefins cyclooctadiene (cod) and norborna‐2,5‐diene (nbd) for cationic complexes of the type [Rh(ligand)(diolefin)]BF4 for the ligands Binap (1,1′‐binaphthalene‐2,2′‐diylbis(phenylphosphine)), Me‐Duphos (1,2‐bis(2,5‐dimethylphospholano)benzene, and Catasium in the solvents methanol, THF, and propylene carbonate. Furthermore, an approach is presented to determine the desired rate constant and the resulting respective pre‐hydrogenation time from stoichiometric hydrogenations of the diolefin complexes via UV/Vis spectroscopy. This method is especially useful for very slow diolefin hydrogenations (e.g., cod hydrogenation with the ligands Me‐Duphos, Et‐Duphos (1,2‐bis(2,5‐diethylphospholano)benzene), and dppe (1,2‐bis(diphenylphosphino)ethane). No need to wait: Rate constants of diolefin hydrogenations with cationic rhodium complexes in different solvents have been determined by monitoring hydrogen consumption (catalytic) and UV/Vis spectra (stoichiometric), to afford prehydrogenation times of corresponding diolefin complexes and thus avoid induction periods in asymmetric hydrogenations. The picture shows the UV/Vis reaction spectrum for the stoichiometric hydrogenation of [Rh(Me‐Duphos)(cod)]BF4.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>18034444</pmid><doi>10.1002/chem.200701150</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2008-02, Vol.14 (5), p.1445-1451
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_70271894
source Wiley
subjects Alkenes - chemistry
asymmetric catalysis
Catalysis
Furans - chemistry
Hydrogenation
Kinetics
Ligands
Methanol - chemistry
Molecular Structure
Organometallic Compounds - chemistry
Phosphines - chemical synthesis
Propane - analogs & derivatives
Propane - chemistry
rhodium
Rhodium - chemistry
Solvents - chemistry
Spectrophotometry, Ultraviolet
Stereoisomerism
UV/Vis spectroscopy
title Rhodium-Complex-Catalyzed Asymmetric Hydrogenation: Transformation of Precatalysts into Active Species
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rhodium-Complex-Catalyzed%20Asymmetric%20Hydrogenation:%20Transformation%20of%20Precatalysts%20into%20Active%20Species&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Preetz,%20Angelika&rft.date=2008-02-08&rft.volume=14&rft.issue=5&rft.spage=1445&rft.epage=1451&rft.pages=1445-1451&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.200701150&rft_dat=%3Cproquest_cross%3E70271894%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4140-4097a7d1375e09abf590b29196d0a5c1420a35c1565c4bdcdf6c7abf1ceeac283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70271894&rft_id=info:pmid/18034444&rfr_iscdi=true