Loading…
Rhodium-Complex-Catalyzed Asymmetric Hydrogenation: Transformation of Precatalysts into Active Species
The use of diolefin‐containing rhodium precatalysts leads to induction periods in asymmetric hydrogenation of prochiral olefins. Consequently, the reaction rate increases in the beginning. The induction period is caused by the fact that some of the catalyst is blocked by the diolefin and thus not av...
Saved in:
Published in: | Chemistry : a European journal 2008-02, Vol.14 (5), p.1445-1451 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4140-4097a7d1375e09abf590b29196d0a5c1420a35c1565c4bdcdf6c7abf1ceeac283 |
---|---|
cites | cdi_FETCH-LOGICAL-c4140-4097a7d1375e09abf590b29196d0a5c1420a35c1565c4bdcdf6c7abf1ceeac283 |
container_end_page | 1451 |
container_issue | 5 |
container_start_page | 1445 |
container_title | Chemistry : a European journal |
container_volume | 14 |
creator | Preetz, Angelika Drexler, Hans-Joachim Fischer, Christian Dai, Zhenya Börner, Armin Baumann, Wolfgang Spannenberg, Anke Thede, Richard Heller, Detlef |
description | The use of diolefin‐containing rhodium precatalysts leads to induction periods in asymmetric hydrogenation of prochiral olefins. Consequently, the reaction rate increases in the beginning. The induction period is caused by the fact that some of the catalyst is blocked by the diolefin and thus not available for hydrogenation of the prochiral olefin. Therefore, the maximum reaction rate cannot be reached initially. Due to the relatively slow hydrogenation of cyclooctadiene (cod) the share of active catalysts increases at first, and this leads to typical induction periods. The aim of this work is to quantify the hydrogenation of the diolefins cyclooctadiene (cod) and norborna‐2,5‐diene (nbd) for cationic complexes of the type [Rh(ligand)(diolefin)]BF4 for the ligands Binap (1,1′‐binaphthalene‐2,2′‐diylbis(phenylphosphine)), Me‐Duphos (1,2‐bis(2,5‐dimethylphospholano)benzene, and Catasium in the solvents methanol, THF, and propylene carbonate. Furthermore, an approach is presented to determine the desired rate constant and the resulting respective pre‐hydrogenation time from stoichiometric hydrogenations of the diolefin complexes via UV/Vis spectroscopy. This method is especially useful for very slow diolefin hydrogenations (e.g., cod hydrogenation with the ligands Me‐Duphos, Et‐Duphos (1,2‐bis(2,5‐diethylphospholano)benzene), and dppe (1,2‐bis(diphenylphosphino)ethane).
No need to wait: Rate constants of diolefin hydrogenations with cationic rhodium complexes in different solvents have been determined by monitoring hydrogen consumption (catalytic) and UV/Vis spectra (stoichiometric), to afford prehydrogenation times of corresponding diolefin complexes and thus avoid induction periods in asymmetric hydrogenations. The picture shows the UV/Vis reaction spectrum for the stoichiometric hydrogenation of [Rh(Me‐Duphos)(cod)]BF4. |
doi_str_mv | 10.1002/chem.200701150 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70271894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70271894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4140-4097a7d1375e09abf590b29196d0a5c1420a35c1565c4bdcdf6c7abf1ceeac283</originalsourceid><addsrcrecordid>eNqFkMFP2zAUxi20CTq2K8cpp93SPcd2XHPrIqCTykAb0yQuluu8DLM47ux0I_z1BFrBbnuXT0_6fd_hR8gRhSkFKD7aG_TTAkACpQL2yISKguZMluIVmYDiMi8FUwfkTUq3AKBKxvbJAZ0B4-NNSPP1JtRu4_Mq-HWLd3lletMO91hn8zR4j310NlsMdQw_sTO9C91xdhVNl5oQ_dOfhSa7jGifiqlPmev6kM1t7_5g9m2N1mF6S143pk34bpeH5PvpyVW1yJcXZ5-r-TK3nHLIOShpZE2ZFAjKrBqhYFUoqsoajLCUF2DYmKIUlq9qWzellSNGLaKxxYwdkg_b3XUMvzeYeu1dsti2psOwSVpCIelM8RGcbkEbQ0oRG72Ozps4aAr60ax-NKufzY6F97vlzcpj_YLvVI6A2gJ_XYvDf-Z0tTg5_3c833Zd6vHuuWviL13KUYb-8eVMsyW_XsjTT5qxBxzsljw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70271894</pqid></control><display><type>article</type><title>Rhodium-Complex-Catalyzed Asymmetric Hydrogenation: Transformation of Precatalysts into Active Species</title><source>Wiley</source><creator>Preetz, Angelika ; Drexler, Hans-Joachim ; Fischer, Christian ; Dai, Zhenya ; Börner, Armin ; Baumann, Wolfgang ; Spannenberg, Anke ; Thede, Richard ; Heller, Detlef</creator><creatorcontrib>Preetz, Angelika ; Drexler, Hans-Joachim ; Fischer, Christian ; Dai, Zhenya ; Börner, Armin ; Baumann, Wolfgang ; Spannenberg, Anke ; Thede, Richard ; Heller, Detlef</creatorcontrib><description>The use of diolefin‐containing rhodium precatalysts leads to induction periods in asymmetric hydrogenation of prochiral olefins. Consequently, the reaction rate increases in the beginning. The induction period is caused by the fact that some of the catalyst is blocked by the diolefin and thus not available for hydrogenation of the prochiral olefin. Therefore, the maximum reaction rate cannot be reached initially. Due to the relatively slow hydrogenation of cyclooctadiene (cod) the share of active catalysts increases at first, and this leads to typical induction periods. The aim of this work is to quantify the hydrogenation of the diolefins cyclooctadiene (cod) and norborna‐2,5‐diene (nbd) for cationic complexes of the type [Rh(ligand)(diolefin)]BF4 for the ligands Binap (1,1′‐binaphthalene‐2,2′‐diylbis(phenylphosphine)), Me‐Duphos (1,2‐bis(2,5‐dimethylphospholano)benzene, and Catasium in the solvents methanol, THF, and propylene carbonate. Furthermore, an approach is presented to determine the desired rate constant and the resulting respective pre‐hydrogenation time from stoichiometric hydrogenations of the diolefin complexes via UV/Vis spectroscopy. This method is especially useful for very slow diolefin hydrogenations (e.g., cod hydrogenation with the ligands Me‐Duphos, Et‐Duphos (1,2‐bis(2,5‐diethylphospholano)benzene), and dppe (1,2‐bis(diphenylphosphino)ethane).
No need to wait: Rate constants of diolefin hydrogenations with cationic rhodium complexes in different solvents have been determined by monitoring hydrogen consumption (catalytic) and UV/Vis spectra (stoichiometric), to afford prehydrogenation times of corresponding diolefin complexes and thus avoid induction periods in asymmetric hydrogenations. The picture shows the UV/Vis reaction spectrum for the stoichiometric hydrogenation of [Rh(Me‐Duphos)(cod)]BF4.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.200701150</identifier><identifier>PMID: 18034444</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Alkenes - chemistry ; asymmetric catalysis ; Catalysis ; Furans - chemistry ; Hydrogenation ; Kinetics ; Ligands ; Methanol - chemistry ; Molecular Structure ; Organometallic Compounds - chemistry ; Phosphines - chemical synthesis ; Propane - analogs & derivatives ; Propane - chemistry ; rhodium ; Rhodium - chemistry ; Solvents - chemistry ; Spectrophotometry, Ultraviolet ; Stereoisomerism ; UV/Vis spectroscopy</subject><ispartof>Chemistry : a European journal, 2008-02, Vol.14 (5), p.1445-1451</ispartof><rights>Copyright © 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4140-4097a7d1375e09abf590b29196d0a5c1420a35c1565c4bdcdf6c7abf1ceeac283</citedby><cites>FETCH-LOGICAL-c4140-4097a7d1375e09abf590b29196d0a5c1420a35c1565c4bdcdf6c7abf1ceeac283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18034444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Preetz, Angelika</creatorcontrib><creatorcontrib>Drexler, Hans-Joachim</creatorcontrib><creatorcontrib>Fischer, Christian</creatorcontrib><creatorcontrib>Dai, Zhenya</creatorcontrib><creatorcontrib>Börner, Armin</creatorcontrib><creatorcontrib>Baumann, Wolfgang</creatorcontrib><creatorcontrib>Spannenberg, Anke</creatorcontrib><creatorcontrib>Thede, Richard</creatorcontrib><creatorcontrib>Heller, Detlef</creatorcontrib><title>Rhodium-Complex-Catalyzed Asymmetric Hydrogenation: Transformation of Precatalysts into Active Species</title><title>Chemistry : a European journal</title><addtitle>Chemistry - A European Journal</addtitle><description>The use of diolefin‐containing rhodium precatalysts leads to induction periods in asymmetric hydrogenation of prochiral olefins. Consequently, the reaction rate increases in the beginning. The induction period is caused by the fact that some of the catalyst is blocked by the diolefin and thus not available for hydrogenation of the prochiral olefin. Therefore, the maximum reaction rate cannot be reached initially. Due to the relatively slow hydrogenation of cyclooctadiene (cod) the share of active catalysts increases at first, and this leads to typical induction periods. The aim of this work is to quantify the hydrogenation of the diolefins cyclooctadiene (cod) and norborna‐2,5‐diene (nbd) for cationic complexes of the type [Rh(ligand)(diolefin)]BF4 for the ligands Binap (1,1′‐binaphthalene‐2,2′‐diylbis(phenylphosphine)), Me‐Duphos (1,2‐bis(2,5‐dimethylphospholano)benzene, and Catasium in the solvents methanol, THF, and propylene carbonate. Furthermore, an approach is presented to determine the desired rate constant and the resulting respective pre‐hydrogenation time from stoichiometric hydrogenations of the diolefin complexes via UV/Vis spectroscopy. This method is especially useful for very slow diolefin hydrogenations (e.g., cod hydrogenation with the ligands Me‐Duphos, Et‐Duphos (1,2‐bis(2,5‐diethylphospholano)benzene), and dppe (1,2‐bis(diphenylphosphino)ethane).
No need to wait: Rate constants of diolefin hydrogenations with cationic rhodium complexes in different solvents have been determined by monitoring hydrogen consumption (catalytic) and UV/Vis spectra (stoichiometric), to afford prehydrogenation times of corresponding diolefin complexes and thus avoid induction periods in asymmetric hydrogenations. The picture shows the UV/Vis reaction spectrum for the stoichiometric hydrogenation of [Rh(Me‐Duphos)(cod)]BF4.</description><subject>Alkenes - chemistry</subject><subject>asymmetric catalysis</subject><subject>Catalysis</subject><subject>Furans - chemistry</subject><subject>Hydrogenation</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Methanol - chemistry</subject><subject>Molecular Structure</subject><subject>Organometallic Compounds - chemistry</subject><subject>Phosphines - chemical synthesis</subject><subject>Propane - analogs & derivatives</subject><subject>Propane - chemistry</subject><subject>rhodium</subject><subject>Rhodium - chemistry</subject><subject>Solvents - chemistry</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Stereoisomerism</subject><subject>UV/Vis spectroscopy</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMFP2zAUxi20CTq2K8cpp93SPcd2XHPrIqCTykAb0yQuluu8DLM47ux0I_z1BFrBbnuXT0_6fd_hR8gRhSkFKD7aG_TTAkACpQL2yISKguZMluIVmYDiMi8FUwfkTUq3AKBKxvbJAZ0B4-NNSPP1JtRu4_Mq-HWLd3lletMO91hn8zR4j310NlsMdQw_sTO9C91xdhVNl5oQ_dOfhSa7jGifiqlPmev6kM1t7_5g9m2N1mF6S143pk34bpeH5PvpyVW1yJcXZ5-r-TK3nHLIOShpZE2ZFAjKrBqhYFUoqsoajLCUF2DYmKIUlq9qWzellSNGLaKxxYwdkg_b3XUMvzeYeu1dsti2psOwSVpCIelM8RGcbkEbQ0oRG72Ozps4aAr60ax-NKufzY6F97vlzcpj_YLvVI6A2gJ_XYvDf-Z0tTg5_3c833Zd6vHuuWviL13KUYb-8eVMsyW_XsjTT5qxBxzsljw</recordid><startdate>20080208</startdate><enddate>20080208</enddate><creator>Preetz, Angelika</creator><creator>Drexler, Hans-Joachim</creator><creator>Fischer, Christian</creator><creator>Dai, Zhenya</creator><creator>Börner, Armin</creator><creator>Baumann, Wolfgang</creator><creator>Spannenberg, Anke</creator><creator>Thede, Richard</creator><creator>Heller, Detlef</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080208</creationdate><title>Rhodium-Complex-Catalyzed Asymmetric Hydrogenation: Transformation of Precatalysts into Active Species</title><author>Preetz, Angelika ; Drexler, Hans-Joachim ; Fischer, Christian ; Dai, Zhenya ; Börner, Armin ; Baumann, Wolfgang ; Spannenberg, Anke ; Thede, Richard ; Heller, Detlef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4140-4097a7d1375e09abf590b29196d0a5c1420a35c1565c4bdcdf6c7abf1ceeac283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alkenes - chemistry</topic><topic>asymmetric catalysis</topic><topic>Catalysis</topic><topic>Furans - chemistry</topic><topic>Hydrogenation</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Methanol - chemistry</topic><topic>Molecular Structure</topic><topic>Organometallic Compounds - chemistry</topic><topic>Phosphines - chemical synthesis</topic><topic>Propane - analogs & derivatives</topic><topic>Propane - chemistry</topic><topic>rhodium</topic><topic>Rhodium - chemistry</topic><topic>Solvents - chemistry</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Stereoisomerism</topic><topic>UV/Vis spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Preetz, Angelika</creatorcontrib><creatorcontrib>Drexler, Hans-Joachim</creatorcontrib><creatorcontrib>Fischer, Christian</creatorcontrib><creatorcontrib>Dai, Zhenya</creatorcontrib><creatorcontrib>Börner, Armin</creatorcontrib><creatorcontrib>Baumann, Wolfgang</creatorcontrib><creatorcontrib>Spannenberg, Anke</creatorcontrib><creatorcontrib>Thede, Richard</creatorcontrib><creatorcontrib>Heller, Detlef</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Preetz, Angelika</au><au>Drexler, Hans-Joachim</au><au>Fischer, Christian</au><au>Dai, Zhenya</au><au>Börner, Armin</au><au>Baumann, Wolfgang</au><au>Spannenberg, Anke</au><au>Thede, Richard</au><au>Heller, Detlef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rhodium-Complex-Catalyzed Asymmetric Hydrogenation: Transformation of Precatalysts into Active Species</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry - A European Journal</addtitle><date>2008-02-08</date><risdate>2008</risdate><volume>14</volume><issue>5</issue><spage>1445</spage><epage>1451</epage><pages>1445-1451</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>The use of diolefin‐containing rhodium precatalysts leads to induction periods in asymmetric hydrogenation of prochiral olefins. Consequently, the reaction rate increases in the beginning. The induction period is caused by the fact that some of the catalyst is blocked by the diolefin and thus not available for hydrogenation of the prochiral olefin. Therefore, the maximum reaction rate cannot be reached initially. Due to the relatively slow hydrogenation of cyclooctadiene (cod) the share of active catalysts increases at first, and this leads to typical induction periods. The aim of this work is to quantify the hydrogenation of the diolefins cyclooctadiene (cod) and norborna‐2,5‐diene (nbd) for cationic complexes of the type [Rh(ligand)(diolefin)]BF4 for the ligands Binap (1,1′‐binaphthalene‐2,2′‐diylbis(phenylphosphine)), Me‐Duphos (1,2‐bis(2,5‐dimethylphospholano)benzene, and Catasium in the solvents methanol, THF, and propylene carbonate. Furthermore, an approach is presented to determine the desired rate constant and the resulting respective pre‐hydrogenation time from stoichiometric hydrogenations of the diolefin complexes via UV/Vis spectroscopy. This method is especially useful for very slow diolefin hydrogenations (e.g., cod hydrogenation with the ligands Me‐Duphos, Et‐Duphos (1,2‐bis(2,5‐diethylphospholano)benzene), and dppe (1,2‐bis(diphenylphosphino)ethane).
No need to wait: Rate constants of diolefin hydrogenations with cationic rhodium complexes in different solvents have been determined by monitoring hydrogen consumption (catalytic) and UV/Vis spectra (stoichiometric), to afford prehydrogenation times of corresponding diolefin complexes and thus avoid induction periods in asymmetric hydrogenations. The picture shows the UV/Vis reaction spectrum for the stoichiometric hydrogenation of [Rh(Me‐Duphos)(cod)]BF4.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>18034444</pmid><doi>10.1002/chem.200701150</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2008-02, Vol.14 (5), p.1445-1451 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_70271894 |
source | Wiley |
subjects | Alkenes - chemistry asymmetric catalysis Catalysis Furans - chemistry Hydrogenation Kinetics Ligands Methanol - chemistry Molecular Structure Organometallic Compounds - chemistry Phosphines - chemical synthesis Propane - analogs & derivatives Propane - chemistry rhodium Rhodium - chemistry Solvents - chemistry Spectrophotometry, Ultraviolet Stereoisomerism UV/Vis spectroscopy |
title | Rhodium-Complex-Catalyzed Asymmetric Hydrogenation: Transformation of Precatalysts into Active Species |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rhodium-Complex-Catalyzed%20Asymmetric%20Hydrogenation:%20Transformation%20of%20Precatalysts%20into%20Active%20Species&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Preetz,%20Angelika&rft.date=2008-02-08&rft.volume=14&rft.issue=5&rft.spage=1445&rft.epage=1451&rft.pages=1445-1451&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.200701150&rft_dat=%3Cproquest_cross%3E70271894%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4140-4097a7d1375e09abf590b29196d0a5c1420a35c1565c4bdcdf6c7abf1ceeac283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70271894&rft_id=info:pmid/18034444&rfr_iscdi=true |