Loading…
Phase diagram of a two-component Fermi gas with resonant interactions
The pairing of fermions lies at the heart of superconductivity and superfluidity. The stability of these pairs determines the robustness of the superfluid state, and the quest for superconductors with high critical temperature equates to a search for systems with strong pairing mechanisms. Ultracold...
Saved in:
Published in: | Nature (London) 2008-02, Vol.451 (7179), p.689-693 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c725t-e095c3e97fc8e443b1642bacaf7ff5ab45d3a3d1fd3fddb237293df25ecbcb4c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c725t-e095c3e97fc8e443b1642bacaf7ff5ab45d3a3d1fd3fddb237293df25ecbcb4c3 |
container_end_page | 693 |
container_issue | 7179 |
container_start_page | 689 |
container_title | Nature (London) |
container_volume | 451 |
creator | Shin, Yong-il Schunck, Christian H Schirotzek, André Ketterle, Wolfgang |
description | The pairing of fermions lies at the heart of superconductivity and superfluidity. The stability of these pairs determines the robustness of the superfluid state, and the quest for superconductors with high critical temperature equates to a search for systems with strong pairing mechanisms. Ultracold atomic Fermi gases present a highly controllable model system for studying strongly interacting fermions. Tunable interactions (through Feshbach collisional resonances) and the control of population or mass imbalance among the spin components provide unique opportunities to investigate the stability of pairing-and possibly to search for exotic forms of superfluidity. A major controversy has surrounded the stability of superfluidity against an imbalance between the two spin components when the fermions interact resonantly (that is, at unitarity). Here we present the phase diagram of a spin-polarized Fermi gas of 6Li atoms at unitarity, experimentally mapping out the superfluid phases versus temperature and density imbalance. Using tomographic techniques, we reveal spatial discontinuities in the spin polarization; this is the signature of a first-order superfluid-to-normal phase transition, and disappears at a tricritical point where the nature of the phase transition changes from first-order to second-order. At zero temperature, there is a quantum phase transition from a fully paired superfluid to a partially polarized normal gas. These observations and the implementation of an in situ ideal gas thermometer provide quantitative tests of theoretical calculations on the stability of resonant superfluidity. |
doi_str_mv | 10.1038/nature06473 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70276684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A189748239</galeid><sourcerecordid>A189748239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-e095c3e97fc8e443b1642bacaf7ff5ab45d3a3d1fd3fddb237293df25ecbcb4c3</originalsourceid><addsrcrecordid>eNqNk0GP1CAUgInRuOPqybupezAx2pUWWuhxMtnVTTZqdI3HhtJHl00Ls0Cz-u_FdOJ0dDYOHEgeHx_vER5CzzN8mmHC3xkRRge4pIw8QIuMsjKlJWcP0QLjnKeYk_IIPfH-BmNcZIw-RkcZz4syjgU6-3wtPCStFp0TQ2JVIpJwZ1Nph7U1YEJyDm7QSSd8cqfDdeLAWyNiXJsATsigrfFP0SMleg_PNusx-nZ-drX6kF5-en-xWl6mkuVFSAFXhSRQMSU5UEqarKR5I6RQTKlCNLRoiSBtplqi2rbJCcsr0qq8ANnIhkpyjF5N3rWztyP4UA_aS-h7YcCOvmY4Z2XJaQRP_gJv7OhMzK3OMS0KTngVoXSCOtFDrY2yIRbUgYl19bF4pWN4mVUkPinlxaE8rxjlOam2Sezwcq1v67n0fmhmOt0DxdnCoOXeVA87MLvh9c6ByAT4EToxel9ffP2yK_8vO_O-uZ9dXn1ffdw1H0D_65bOeu9A1WunB-F-1hmuf7dGPWuNSL_YfImxGaDdspteiMDbCfBxy3Tgtn9mv-_lhE_BP7458wu8nx6r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204558389</pqid></control><display><type>article</type><title>Phase diagram of a two-component Fermi gas with resonant interactions</title><source>Nature Publishing Group</source><creator>Shin, Yong-il ; Schunck, Christian H ; Schirotzek, André ; Ketterle, Wolfgang</creator><creatorcontrib>Shin, Yong-il ; Schunck, Christian H ; Schirotzek, André ; Ketterle, Wolfgang</creatorcontrib><description>The pairing of fermions lies at the heart of superconductivity and superfluidity. The stability of these pairs determines the robustness of the superfluid state, and the quest for superconductors with high critical temperature equates to a search for systems with strong pairing mechanisms. Ultracold atomic Fermi gases present a highly controllable model system for studying strongly interacting fermions. Tunable interactions (through Feshbach collisional resonances) and the control of population or mass imbalance among the spin components provide unique opportunities to investigate the stability of pairing-and possibly to search for exotic forms of superfluidity. A major controversy has surrounded the stability of superfluidity against an imbalance between the two spin components when the fermions interact resonantly (that is, at unitarity). Here we present the phase diagram of a spin-polarized Fermi gas of 6Li atoms at unitarity, experimentally mapping out the superfluid phases versus temperature and density imbalance. Using tomographic techniques, we reveal spatial discontinuities in the spin polarization; this is the signature of a first-order superfluid-to-normal phase transition, and disappears at a tricritical point where the nature of the phase transition changes from first-order to second-order. At zero temperature, there is a quantum phase transition from a fully paired superfluid to a partially polarized normal gas. These observations and the implementation of an in situ ideal gas thermometer provide quantitative tests of theoretical calculations on the stability of resonant superfluidity.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature06473</identifier><identifier>PMID: 18256666</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Fermi surfaces ; Fermions ; Gases ; Humanities and Social Sciences ; letter ; multidisciplinary ; Particle physics ; Phase diagrams ; Properties ; Science ; Science (multidisciplinary) ; Superconductivity ; Superfluidity</subject><ispartof>Nature (London), 2008-02, Vol.451 (7179), p.689-693</ispartof><rights>Springer Nature Limited 2008</rights><rights>COPYRIGHT 2008 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 7, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-e095c3e97fc8e443b1642bacaf7ff5ab45d3a3d1fd3fddb237293df25ecbcb4c3</citedby><cites>FETCH-LOGICAL-c725t-e095c3e97fc8e443b1642bacaf7ff5ab45d3a3d1fd3fddb237293df25ecbcb4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18256666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Yong-il</creatorcontrib><creatorcontrib>Schunck, Christian H</creatorcontrib><creatorcontrib>Schirotzek, André</creatorcontrib><creatorcontrib>Ketterle, Wolfgang</creatorcontrib><title>Phase diagram of a two-component Fermi gas with resonant interactions</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The pairing of fermions lies at the heart of superconductivity and superfluidity. The stability of these pairs determines the robustness of the superfluid state, and the quest for superconductors with high critical temperature equates to a search for systems with strong pairing mechanisms. Ultracold atomic Fermi gases present a highly controllable model system for studying strongly interacting fermions. Tunable interactions (through Feshbach collisional resonances) and the control of population or mass imbalance among the spin components provide unique opportunities to investigate the stability of pairing-and possibly to search for exotic forms of superfluidity. A major controversy has surrounded the stability of superfluidity against an imbalance between the two spin components when the fermions interact resonantly (that is, at unitarity). Here we present the phase diagram of a spin-polarized Fermi gas of 6Li atoms at unitarity, experimentally mapping out the superfluid phases versus temperature and density imbalance. Using tomographic techniques, we reveal spatial discontinuities in the spin polarization; this is the signature of a first-order superfluid-to-normal phase transition, and disappears at a tricritical point where the nature of the phase transition changes from first-order to second-order. At zero temperature, there is a quantum phase transition from a fully paired superfluid to a partially polarized normal gas. These observations and the implementation of an in situ ideal gas thermometer provide quantitative tests of theoretical calculations on the stability of resonant superfluidity.</description><subject>Fermi surfaces</subject><subject>Fermions</subject><subject>Gases</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>multidisciplinary</subject><subject>Particle physics</subject><subject>Phase diagrams</subject><subject>Properties</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Superconductivity</subject><subject>Superfluidity</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNk0GP1CAUgInRuOPqybupezAx2pUWWuhxMtnVTTZqdI3HhtJHl00Ls0Cz-u_FdOJ0dDYOHEgeHx_vER5CzzN8mmHC3xkRRge4pIw8QIuMsjKlJWcP0QLjnKeYk_IIPfH-BmNcZIw-RkcZz4syjgU6-3wtPCStFp0TQ2JVIpJwZ1Nph7U1YEJyDm7QSSd8cqfDdeLAWyNiXJsATsigrfFP0SMleg_PNusx-nZ-drX6kF5-en-xWl6mkuVFSAFXhSRQMSU5UEqarKR5I6RQTKlCNLRoiSBtplqi2rbJCcsr0qq8ANnIhkpyjF5N3rWztyP4UA_aS-h7YcCOvmY4Z2XJaQRP_gJv7OhMzK3OMS0KTngVoXSCOtFDrY2yIRbUgYl19bF4pWN4mVUkPinlxaE8rxjlOam2Sezwcq1v67n0fmhmOt0DxdnCoOXeVA87MLvh9c6ByAT4EToxel9ffP2yK_8vO_O-uZ9dXn1ffdw1H0D_65bOeu9A1WunB-F-1hmuf7dGPWuNSL_YfImxGaDdspteiMDbCfBxy3Tgtn9mv-_lhE_BP7458wu8nx6r</recordid><startdate>20080207</startdate><enddate>20080207</enddate><creator>Shin, Yong-il</creator><creator>Schunck, Christian H</creator><creator>Schirotzek, André</creator><creator>Ketterle, Wolfgang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20080207</creationdate><title>Phase diagram of a two-component Fermi gas with resonant interactions</title><author>Shin, Yong-il ; Schunck, Christian H ; Schirotzek, André ; Ketterle, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-e095c3e97fc8e443b1642bacaf7ff5ab45d3a3d1fd3fddb237293df25ecbcb4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Fermi surfaces</topic><topic>Fermions</topic><topic>Gases</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>multidisciplinary</topic><topic>Particle physics</topic><topic>Phase diagrams</topic><topic>Properties</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Superconductivity</topic><topic>Superfluidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Yong-il</creatorcontrib><creatorcontrib>Schunck, Christian H</creatorcontrib><creatorcontrib>Schirotzek, André</creatorcontrib><creatorcontrib>Ketterle, Wolfgang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep (ProQuest)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Yong-il</au><au>Schunck, Christian H</au><au>Schirotzek, André</au><au>Ketterle, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase diagram of a two-component Fermi gas with resonant interactions</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2008-02-07</date><risdate>2008</risdate><volume>451</volume><issue>7179</issue><spage>689</spage><epage>693</epage><pages>689-693</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The pairing of fermions lies at the heart of superconductivity and superfluidity. The stability of these pairs determines the robustness of the superfluid state, and the quest for superconductors with high critical temperature equates to a search for systems with strong pairing mechanisms. Ultracold atomic Fermi gases present a highly controllable model system for studying strongly interacting fermions. Tunable interactions (through Feshbach collisional resonances) and the control of population or mass imbalance among the spin components provide unique opportunities to investigate the stability of pairing-and possibly to search for exotic forms of superfluidity. A major controversy has surrounded the stability of superfluidity against an imbalance between the two spin components when the fermions interact resonantly (that is, at unitarity). Here we present the phase diagram of a spin-polarized Fermi gas of 6Li atoms at unitarity, experimentally mapping out the superfluid phases versus temperature and density imbalance. Using tomographic techniques, we reveal spatial discontinuities in the spin polarization; this is the signature of a first-order superfluid-to-normal phase transition, and disappears at a tricritical point where the nature of the phase transition changes from first-order to second-order. At zero temperature, there is a quantum phase transition from a fully paired superfluid to a partially polarized normal gas. These observations and the implementation of an in situ ideal gas thermometer provide quantitative tests of theoretical calculations on the stability of resonant superfluidity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>18256666</pmid><doi>10.1038/nature06473</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2008-02, Vol.451 (7179), p.689-693 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_70276684 |
source | Nature Publishing Group |
subjects | Fermi surfaces Fermions Gases Humanities and Social Sciences letter multidisciplinary Particle physics Phase diagrams Properties Science Science (multidisciplinary) Superconductivity Superfluidity |
title | Phase diagram of a two-component Fermi gas with resonant interactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20diagram%20of%20a%20two-component%20Fermi%20gas%20with%20resonant%20interactions&rft.jtitle=Nature%20(London)&rft.au=Shin,%20Yong-il&rft.date=2008-02-07&rft.volume=451&rft.issue=7179&rft.spage=689&rft.epage=693&rft.pages=689-693&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature06473&rft_dat=%3Cgale_proqu%3EA189748239%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c725t-e095c3e97fc8e443b1642bacaf7ff5ab45d3a3d1fd3fddb237293df25ecbcb4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204558389&rft_id=info:pmid/18256666&rft_galeid=A189748239&rfr_iscdi=true |