Loading…

Taurine increases mitochondrial buffering of calcium: role in neuroprotection

We have determined the role of mitochondria in the sequestration of calcium after stimulation of cerebellar granule cells with glutamate. In addition we have evaluated the neuroprotective role of taurine in excitotoxic cell death. Mitochondrial inhibitors were used to determine the calcium buffering...

Full description

Saved in:
Bibliographic Details
Published in:Amino acids 2008-02, Vol.34 (2), p.321-328
Main Author: El Idrissi, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have determined the role of mitochondria in the sequestration of calcium after stimulation of cerebellar granule cells with glutamate. In addition we have evaluated the neuroprotective role of taurine in excitotoxic cell death. Mitochondrial inhibitors were used to determine the calcium buffering capacity of mitochondria, as well as how taurine regulates the ability of mitochondria to buffer intracellular calcium during glutamate depolarization and excitotoxicity. We report here that pre-treatment of cerebellar granule cells with taurine (1 mM, 24 h) significantly counteracted glutamate excitotoxicity. The neuroprotective role of taurine was mediated through regulation of cytoplasmic free calcium ([Ca²⁺] i ), and intra-mitochondrial calcium homeostasis, as determined by fluo-3 and ⁴⁵Ca²⁺-uptake. Furthermore, the overall mitochondrial function was increased in the presence of taurine, as assessed by rhodamine accumulation into mitochondria and total cellular ATP levels. We specifically tested the hypothesis that taurine reduces glutamate excitotoxicity through both the enhancement of mitochondrial function and the regulation of intracellular (cytoplasmic and intra-mitochondrial) calcium homeostasis. The role of taurine in modulating mitochondrial calcium homeostasis could be of particular importance under pathological conditions that are characterized by excessive calcium overloads. Taurine may serve as an endogenous neuroprotective molecule against brain insults.
ISSN:0939-4451
1438-2199
DOI:10.1007/s00726-006-0396-9